Skip to main content
Log in

Investigations on indium phosphide grown by chemical beam epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we present a systematic study of the properties of indium phosphide (InP) layers grown by chemical beam epitaxy (CBE). Trimethylindium (TMIn) and phosphine (PH3) are used as source materials. The relation between the phosphine cracker temperature and the cracking efficiency has been studied by mass spectroscopy during growth. The growth rate and morphology of the layers have been studied by varying the TMIn and phosphine flow rates as well as the substrate temperature. We have found that, under a wide range of growth conditions, the deposition rate is only determined by and proportional to the TMIn flow rate. This is in agreement with literature. Additionally, we observe that the growth rate decreases below a certain phosphine to TMIn flow rate (V/III) ratio and becomes phosphine flow limited. From investigations of the growth rate as a function of temperature, it is concluded that the desorption of indium species from InP starts at a temperature slightly below 540°C. For this desorption process, we have found an activation energy of (217 ± 20) kJ/mol. Further characterization of the InP layers has been carried out by photoluminescence and Hall measurements. From both methods, the optimum growth conditions have been established. Under these conditions, we reproduc-ibly obtain InP layers showing linewidths of the donor-bound exciton transition at 5K around 0.25 meV and a mobility at 77K of about 7.0·104 cm2/Vs. From the analysis of the mobility in the temperature range from 20 to 300K, we conclude that, additionally to shallow donors and acceptors, deep-donor centers with an activation energy of about 150 meV are present in all layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.T. Tsang,J. Vac. Sci. Technol. B 3, 666 (1985).

    Article  CAS  Google Scholar 

  2. D.A. Andrews, S.T. Davey, C.G. Tuppen, B. Wakefïeld and G.J. Davies,Appl. Phys. Lett. 52, 816 (1988).

    Article  CAS  Google Scholar 

  3. Y. Morishita, S. Maruno, M. Gotoda, Y. Nomura and H. Ogata,J. Cryst. Growth 95, 176 (1989).

    Article  CAS  Google Scholar 

  4. A. Rudra, J.F. Carlin, M. Proctor and M. Ilegems,J. Cryst. Growth 111, 589(1991).

    Article  CAS  Google Scholar 

  5. H. Heinecke, B. Baur, R. Höger and A. Miklis,J. Cryst. Growth 105, 143 (1990).

    Article  CAS  Google Scholar 

  6. J.L. Benchimol, F. Alaoui, Y. Gao, G. Le Roux, E.V.K. Rao and F. Alexandre,J. Cryst. Growth 105, 135 (1990).

    Article  CAS  Google Scholar 

  7. M.E. Sherwin, G.O. Munns, M.E. Elta, E.G.Woelk, S.B. Crary, F.L. Terry and G.I. Haddad,J. Cryst. Growth 111, 594 (1991).

    Article  CAS  Google Scholar 

  8. J. Ch. Garcia, Ph. Maurel, Ph. Bove and J.P. Hirtz,J. Appl. Phys. 69, 3297 (1991).

    Article  CAS  Google Scholar 

  9. MKS Instruction Manual 195-112819A-9/90.

  10. M.B. Panish and R.A. Hamm,J. Cryst. Growth 78, 445 (1986).

    Article  CAS  Google Scholar 

  11. M.R. Leys, M.E. Pistol, H. Titze and L. Samuelson,J. Elec- tron. Mater. 18, 25 (1989).

    CAS  Google Scholar 

  12. Z.H. Lu, M.C. Hanna, D.M. Szmyd, E.G. Oh and A. Majerfeld,Appl. Phys. Lett. 56, 177 (1990).

    Article  CAS  Google Scholar 

  13. W. Steiner, Yu. Zhang and M.L.W. Thewalt,Appl. Phys. Lett. 56, 647 (1990).

    Article  CAS  Google Scholar 

  14. H.F. Pen, F.A.J.M. Driessen, S.M. Olsthoorn and L.J. Giling,Semicond. Sci. Technol. 7, 1400 (1992).

    Article  CAS  Google Scholar 

  15. T. Inoue, K. Kainosho, R. Hirano, H. Shimakura, T. Kanazawa and O. Oda,J. Appl. Phys. 67, 7165 (1990).

    Article  CAS  Google Scholar 

  16. “Properties of Indium Phosphide,” Inspec EMIS Datareviews Series No. 6(1991).

  17. G.E. Stillman and C.M. Wolfe,Thin Solid Films 31, 69 (1976).

  18. D.A. Anderson and N. Apsley,Semicond. Sci. Techn. 1, 187 (1986).

    Article  CAS  Google Scholar 

  19. M. Benzaquen, D. Walsh and K. Mazuruk,Phys. Rev. B36, 4388 (1987).

    Google Scholar 

  20. J.S. Blakemore,Semiconductor Statistics (Oxford, England: Pergamon Press, 1962).

    Google Scholar 

  21. D.L. Rode,Semiconductors and Semimetals, vol. 10, ed. R.K. Willardson and A.C. Beer (New York: Academic, 1975).

    Google Scholar 

  22. L. Reggiani,Topics in Applied Physics, vol. 58 (Berlin-Heidel- berg, Germany: Springer-Verlag, 1985).

    Google Scholar 

  23. C. Erginsoy,Phys. Rev. 79, 1013 (1950).

    Article  CAS  Google Scholar 

  24. T.C. McGill and R. Baron,Phys. Rev. B 11, 5208 (1975).

    Article  Google Scholar 

  25. W. Waluckiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C.H. Gatos and H.C. Gatos,J. Appl. Phys. 51, 2659 (1980).

    Article  Google Scholar 

  26. A. Taguchi and S. Yamada,J. Appl. Phys. 61, 2412 (1987).

    Article  CAS  Google Scholar 

  27. M.J. Hafich, H.Y. Lee, P. Silvestre and G.Y. Robinson,J. Cryst. Growth 111, 507 (1991).

    Article  CAS  Google Scholar 

  28. T. RaoSudersena, C. Lacelle, M. Davies, R. Barber, P. Chow- Chong, J. McCaffery, S.J. Rolfe, A.P. Roth, B. Benyon and B. Foster,J. Cryst. Growth 136, 179 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rongen, R., Leys, M.R., Van Hall, P.J. et al. Investigations on indium phosphide grown by chemical beam epitaxy. J. Electron. Mater. 24, 1391–1398 (1995). https://doi.org/10.1007/BF02655454

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655454

Key words

Navigation