Skip to main content
Log in

Modeling ion implantation of HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ion implantation of boron is used to create n on p photodiodes in vacancy-doped mercury cadmium telluride (MC.T). The junction is formed by Hg interstitials from the implant damage region diffusing into the MC.T and annihilating Hg vacancies. The resultant doping profile is n+/n-/p, where the n+ region is near the surface and roughly coincides with the implant damage, the n- region is where Hg vacancies have been annihilated revealing a residual grown-in donor, and the p region remains doped by Hg vacancy double acceptors. We have recently developed a new process modeling tool for simulating junction formation in MC.T by ion implantation. The interstitial source in the damage region is represented by stored interstitials whose distribution depends on the implant dose. These interstitials are released into the bulk at a constant, user defined rate. Once released, they diffuse away from the damage region and annihilate any Hg vacancies they encounter. In this paper, we present results of simulations using this tool and show how it can be used to quantitatively analyze the effects of variations in processing conditions, including implant dose, annealing temperature, and doping background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Meléndez and C.R. Helms,J. Electron. Mater. 22, 999 (1993).

    Google Scholar 

  2. J. Meléndez and C.R. Helms,J. Electron. Mater. 24, 565 (1995).

    Google Scholar 

  3. J. Meléndez and C.R. Helms,J. Electron. Mater. 24, 573 (1995).

    Google Scholar 

  4. C.R. Helms, J.L. Meléndez, H.G. Robinson, S. Holander, J. Hasan and S. Halapete,J. Electron. Mater. 24, 1137 (1995).

    CAS  Google Scholar 

  5. L.O. Bubulac, W.E. Tennant, D.S. Lo, D.D. Edwall, J.C. Robinson, J.S. Chen and G. Bostrup,J. Vac. Sci. and Technol. A 5, 3166 (1987).

    Article  CAS  Google Scholar 

  6. G. Destefanis,Nuclear Instruments and Methods 83, 567 (1983).

    Google Scholar 

  7. R. Kumar, M.B. Dutt, R. Nath, R. Chander and S.C. Gupta,J. Appl. Phys. 68, 5564 (1990).

    Article  CAS  Google Scholar 

  8. H. Schaake,J. Vac. Sci. Technol. 4, 2174 (1986).

    Article  CAS  Google Scholar 

  9. N.E.B. Cowern, K.T.F. Janssenand, H.F.F. Jos,J.Appl. Phys. 68, 6191 (1990).

    Article  CAS  Google Scholar 

  10. D.J. Eaglesham, P.A. Stolk, H.-J. Gossmann and J.M. Poate,Appl. Phys. Lett. 65, 2305 (1994).

    Article  CAS  Google Scholar 

  11. H.G. Robinson, M.D. Deal, G. Amarantunga, P.B. Griffin, D.A. Stevenson and J.D. Plummer,J. Appl. Phys. 71, 2615 (1992).

    Article  CAS  Google Scholar 

  12. J.C. Hu, M.D. Deal and J.D. Plummer,J. Appl. Phys. 78, 1606 (1995).

    Article  CAS  Google Scholar 

  13. J.P. Biersack and L.G. Haggmark,Nucl. Inst. andMeth. 174, 257 (1980).

    Article  CAS  Google Scholar 

  14. J.F. Ziegler, J.P. Biersack and U. Littmark,Stopping Powers and Ranges of Ions in Solids (New York: Peragamon Press, 1985).

    Google Scholar 

  15. K.S. Jones, S. Prussin and E.R. Weber,Appl. Phys. A 45, 1 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, H.G., Mao, D.H., Williams, B.L. et al. Modeling ion implantation of HgCdTe. J. Electron. Mater. 25, 1336–1340 (1996). https://doi.org/10.1007/BF02655029

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655029

Key words

Navigation