Skip to main content
Log in

Growth of fully doped Hg1−xCdxTe heterostructures using a novel iodine doping source to achieve improved device performance at elevated temperatures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Band gap engineered Hg1−xCdxTe (MCT) heterostructures should lead to detectors with improved electro-optic and radiometric performance at elevated operating temperatures. Growth of such structures was accomplished using metalorganic vapor phase epitaxy (MOVPE). Acceptor doping with arsenic (As), using phenylarsine (PhAsH2), demonstrated 100% activation and reproducible control over a wide range of concentrations (1 × 1015 to 3.5 × 1017 cm−3). Although vapor from elemental iodine showed the suitability of iodine as a donor in MC.T, problems arose while controlling low donor concentrations. Initial studies using ethyliodide (EtI) demonstrated that this source could be used successfully to dope MCT, yielding the properties required for stable heterostructure devices, i.e. ≈100% activation, no memory problems and low diffusion coefficient. Cryogenic alkyl cooling or very high dilution factors were required to achieve the concentrations needed for donor doping below ≈1016cm−3 due to the high vapor pressure of the alkyl. A study of an alternative organic iodide source, 2-methylpropyliodide (2 MePrI), which has a much lower vapor pressure, improved control of low donor concentrations. 2 MePrI demonstrated the same donor source suitability as EtI and was used to control iodine concentrations from ≈ 1 × 1015 to 5 × 1017cm−3. The iodine from both sources only incorporated during the CdTe cycles of the interdiffused multilayer process (IMP) in a similar manner to both elemental iodine and As from PhAsH2. High resolution secondary ion mass spectroscopy analysis showed that IMP scale modulations can still be identified after growth. The magnitude of these oscillations is consistent with a diffusion coefficient of≈7 × 10−16cm2s−1 for iodine in MC.T at 365°C. Extrinsically doped device heterostructures, grown using 2 MePrI, have been intended to operate at elevated temperatures either for long wavelength (8–12 smm) equilibrium operation at 145K or nonequilibrium operation at 190 and 295K in both the 3–5 µ and 8–12 µ wavelength ranges. Characterization of such device structures will be discussed. Linear arrays of mesa devices have been fabricated in these layers. Medium wave nonequilibrium device structures have demonstrated high quantum efficiencies and R0A = 37 Ωcm2 for λco = 4.9 µ at 190K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.R. Vydyanath, J.A. Ellsworth and C.M. Devany,J. Electron. Mater. 16, 13 (1987).

    CAS  Google Scholar 

  2. P. Capper, C.D. Maxey, P.A.C Whiffin and B.C. Easton,J. Cryst. Growth 97, 833 (1989).

    Article  CAS  Google Scholar 

  3. C.D. Maxey, I.G. Gale, J.B. Clegg and P.A.C. Whiffin,Semicond. Sci. Technol. 8, S183 (1993).

    Article  CAS  Google Scholar 

  4. D.D. Edwall, L.O. Bubulac and E.R. Gertner,J. Vac. Sci. Technol. B 10, 1423 (1992).

    Article  CAS  Google Scholar 

  5. V. Rao, H. Ehsani, I.B. Bhat, M. Kestigian, R. Starr, M.H. Weiler and M.B. Reine,J. Electron. Mater. 24, 5 (1995).

    Google Scholar 

  6. P. Mitra, T.R. Schimart, F.C. Case, S.L. Barnes, M.B. Reine, R. Starr, M.H. Weiler and M. Kestigian,J. Electron. Mater. 24, 1077 (1995).

    CAS  Google Scholar 

  7. H.R. Vydyanath and F.A. Kröger,J. Electron. Mater. 11, 1 (1982).

    Google Scholar 

  8. EMIS Datareview Series #10, ed. P. Capper (1994).

  9. B.C. Easton, C.D. Maxey, P.A.C. Whiffin, J.A. Roberts, I.G. Gale, F. Grainger and P. Capper,J. Vac. Sci. Technol. B 9, 1682 (1991).

    Article  CAS  Google Scholar 

  10. C.D. Maxey, P.A.C. Whiffin and B.C. Easton,Semicond. Sci. Technol. 6 c26 (1991).

    Article  CAS  Google Scholar 

  11. P. Mitra, Y.L. Tyan, T.R. Schimert and F.C. Case,Appl. Phys. Lett. 65, 2 (1994).

    Article  Google Scholar 

  12. S. Murikami, T. Okamoto, K. Maruyama and H. Takigawa,Appl. Phys. Lett. 63, 899 (1993).

    Article  Google Scholar 

  13. P. Mitra, T.R. Schimert, F.C. Case, Y.L. Tyan, M. Kestigian, R. Starr, M.H. Weiler and M.B. Reine,SPIE 2228, 96 (1994).

    Google Scholar 

  14. M.B. Reine, P.W. Norton, R. Starr, M.H. Weiler, M. Kestigian, P. Mitra, T.R. Schimert, F.C. Case, I.B. Bhat, H. Ehsani and V. Rao,J. Electron Mater. 24, 669 (1995).

    CAS  Google Scholar 

  15. C.T. Elliott, N.T. Gordon, R.S. Hall, T. J. Phillips, C.L. Jones, B.E. Matthews, C.D. Maxey and N.E. Metcalfe,SPIE 2269, 648 (1994).

    Google Scholar 

  16. I.M. Baker, G.J. Crimes, M.D. Jenner, J.E. Parsons, R.A. Ballinghall and C.T. Elliott,Proc. 4th Conf. Adv. IR. Detector and Systems IEE 78 (1990).

  17. A.M. White,Infrared Phys. 27, 6, 361 (1987).

    Article  CAS  Google Scholar 

  18. L. Smith and J. Thompson,J. Matt. Lett. 7, 416 (1989).

    Google Scholar 

  19. P. Capper, C.D. Maxey, P.A.C. Whiffin and B.C. Easton,J. Cryst. Growth 96, 519 (1989).

    Article  CAS  Google Scholar 

  20. A. Wasenzcuk, A. Willoughby, P. Mackett, E. O’Keefe, P. Capper and C.D. Maxey,Proc. 1995II/VI Conf. Edinburgh (to be published).

  21. J. Tunnicliffe, S.J.C Irvine, O.D. Dosser and J.B. Mullin,J. Cryst. Growth 79, 935 (1984).

    Google Scholar 

  22. I. Gale, J.B. Clegg, P. Capper, C.D. Maxey, P. Mackett and E. O’Keefe,Adv. Mat. for Optics and Electonics 5, 2, 53 (1995).

    Article  Google Scholar 

  23. EMIS Datareview Series #10, A5.10, 188 (1994).

  24. Handbook of Chemistry and Physics, 54th ed. D105-108 (1964).

  25. J.S. Gough, M.R. Houlton, S.J.C. Irvine, N. Shaw, M.L. Young and A. Royle,Mater. Lett. 10, 393 (1991).

    Article  CAS  Google Scholar 

  26. J. Geiss,J.E. Hails, A. Graham, G. Blackmore, M.R. Houlton, J. Newey, M.L. Young, M.G. Astles, W. Bell and D.J. Cole-Hamilton,J. Electron. Mater. 24 (9), 1151 (1995).

    Google Scholar 

  27. C.D. Maxey, P. Capper, P.A.C. Whiffin, B.C. Easton and A. Harker,Mater. Lett. 8,835 (1989).

    Article  Google Scholar 

  28. J. Malzbender, E.D. Jones, J.B. Mullin and N. Shaw,J. Electron. Mater. 24, 1225 (1995).

    Google Scholar 

  29. L.O. Bubulac, S.J.C. Irvine, E.R. Gertner, J. Bajaj, W.P. Lin and R. Zucca,Semicond. Sci. Tecnol. 8, S270 (1993).

    Article  CAS  Google Scholar 

  30. C.T. Elliott, N. Gordon, R.S. Hall, T.J. Phillips, A.M. White, C.L. Jones, C.D. Maxey and N.E. Metcalfe,J. Electron. Mater. 25, 1139 (1996).

    CAS  Google Scholar 

  31. C.T. Elliott, N. Gordon, T.J. Phillips, H. Steen, D.J. Wilson, C.L. Jones, C.D. Maxey and N.E. Metcalfe,J. Electron. Mater. 25, 1146 (1996).

    CAS  Google Scholar 

  32. T.J. Phillips and N.T. Gordon.J. Electron. Mater. 25, 1151 (1996).

    CAS  Google Scholar 

  33. D.D. Edwall, L.O. Bubulac and E.R. Gertner,J. Vac. Sci. Technol. B 10,4,1423 (1992).

    Article  CAS  Google Scholar 

  34. L.J. Kozlowski, W.V. McLevige, S.A. Cabelli, A.H.B. Vanderwyck, D.E. Cooper, E.R. Blazejewski, K. Vural and W.E. Tennent,Optical Eng. 33, 3 704 (1994).

    Article  CAS  Google Scholar 

  35. R. Ciupa, A. Rogalski, J. Rutkowski and J. Piotrowski,Optical Eng. 33, 5 1434 (1994).

    Article  CAS  Google Scholar 

  36. T. Ashley, A.B. Dean, C.T. Elliott, C.F. McConville, G.J. Pryce and C.R. Whitehouse,App. Phys. Lett. 59, 14, 1761 (1991).

    Article  CAS  Google Scholar 

  37. C.L. Jones, B.E. Matthews, D.R. Purdy and N.E. Metcalfe,Semicond. Sci. Technol. 6, C110 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxey, C.D., Jones, C.L., Metcalfe, N.E. et al. Growth of fully doped Hg1−xCdxTe heterostructures using a novel iodine doping source to achieve improved device performance at elevated temperatures. J. Electron. Mater. 25, 1276–1285 (1996). https://doi.org/10.1007/BF02655020

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655020

Key words

Navigation