Skip to main content
Log in

Representation of the solubility of lead chloride in various chloride solutions with Pitzer’s model

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A modified Pitzer’s model[6] has been applied to the representation of the activities of various species in chloride solutions of lead (II). The parameters associated with the representation were the formation constants of four lead chlorocomplexes as well as Pitzer’s interaction parameters. [7] They were determined by treatment of a data base composed of experimental solubilities of lead in NaCl, NH4C1, and HC1 solutions at 25 °C. The root mean square (rms) relative deviations obtained for the representation of the experimental solubilities were 7.8 pct, 5.6 pct, and 5.6 pct for the three systems, respectively. The extension of the model to solubilities in a NaClO4-NaCl solution at an apparent ionic strength of 4 mol/kg water gives a rms relative deviation of 8.9 pct if one parameter involving the perchlorate anion is adjusted. A data treatment of experimental solubilities at other temperatures (from 13 °C to 100 °C) for the systems PbCl2-NaCl-H2O and PbCl2-NH4Cl-H2O has been made to determine the temperature derivatives of Pitzer’s parameters involving complexed ions as well as the variation of solubility and complexation constants with temperature. The resulting rms relative deviation is 9.8 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Muir, D.C. Gale, A.J. Parker, and D.E. Giles:Proc. Australas. Int. Min. Metall., 1976, vol. 23, pp. 23–33.

    Google Scholar 

  2. J.O. Nriagu and G.M. Anderson:Chem. Geol., 1971, vol. 7, pp. 171–83.

    Article  CAS  Google Scholar 

  3. K.G. Tan, K. Bartels, and P.L. Bedard:Hydrometallurgy, 1987, vol. 17, pp. 335–56.

    Article  CAS  Google Scholar 

  4. R.G. Holdrich and G.J. Lawson:Hydrometallurgy, 1987, vol. 19, pp. 199–208.

    Article  Google Scholar 

  5. R.H. Stokes and R.A. Robinson:J. Am. Chem. Soc., 1948, vol. 70, p. 1970.

    Article  Google Scholar 

  6. W. Fürst, S. Hachimi, and H. Renon:J. Solution Chem., 1988, vol. 17, pp. 953–65.

    Article  Google Scholar 

  7. K.S. Pitzer:Activity Coefficients in Electrolyte Solutions, R.M. Pytkowicz, ed., CRC Press, Boca Raton, FL, 1979, vol. I, pp. 157–208.

    Google Scholar 

  8. V.E. Mironov:Russ. J. Inorg. Chem., (Engl. Transi.) 1961, vol. 6, p. 205.

    Google Scholar 

  9. G. Haight and J.R. Peterson:Inorg. Chem., 1965, vol. 4, pp. 1073–75.

    Article  CAS  Google Scholar 

  10. J. Lozar, L. Schuffenecker, G. Cudey, and J.B. Bourdet:Thermochim. Acta, 1984, vol. 79, pp. 171–86.

    Article  CAS  Google Scholar 

  11. A. Seidell and W.F. Linke:Solubilities of Inorganic and Metal Organic Compounds, American Chemical Society, Washington, DC, 1965.

    Google Scholar 

  12. J. Kendall and C.H. Sloan:J. Am. Chem. Soc., 1925, vol. 47, pp. 2306–17.

    Article  CAS  Google Scholar 

  13. W. Herz and M. Hellebrandt:Z. Anorg. Allgem. Chem., 1923, vol. 130, pp. 188–98.

    Article  CAS  Google Scholar 

  14. G.E.R. Deacon:J. Che. Soc., 1927, vol. 130, pp. 2035–65.

    Google Scholar 

  15. A.A. Noyes:Z. Phys. Chem., 1892, vol. 9, pp. 603–32.

    Google Scholar 

  16. C.L. Von Ende:Z. Anorg. Chem., 1901, vol. 26, p. 148.

    Google Scholar 

  17. L. Wilkerson, N.O. Bathurst, and H.N. Parton:Trans. Faraday Soc., 1937, vol. 33, pp. 623–28.

    Article  Google Scholar 

  18. J.N. Brönsted:Inter. Congr. Appl. Chem., 1909, vol. 10, p. 110.

    Google Scholar 

  19. H.W. Fnot and Levy:Am. Chem. J., 1907, vol. 37, p. 119.

    Google Scholar 

  20. F. Vierling:Bull. Soc. Chim. Fr., 1972, vol. 11, pp. 4096–99.

    Google Scholar 

  21. H.L. Clever and F.J. Johnston:J. Phys. Chem. Ref. Data, 1980, vol. 9, pp. 751–84.

    Article  ADS  CAS  Google Scholar 

  22. F-X. Ball, W. Fürst, and H. Renon:AIChE J., 1985, vol. 31, pp. 392–99.

    Article  CAS  Google Scholar 

  23. W. Fürst and H. Renon:I&EC Ind. Eng. Chem. Process Des. Dev., 1982, vol. 21, pp. 396–400.

    Article  Google Scholar 

  24. D.W. Marquardt:SIAM J., 1963, vol. 11, pp. 431–41.

    MATH  MathSciNet  Google Scholar 

  25. R.M. Smith and A.E. Martell:Critical Stability Constants, Inorganic Complexes, Plenum Press, New York, NY, 1976, vol. 4.

    Google Scholar 

  26. N. Demassieux:Ann. Chim., 1923, vol. 20, pp. 233–96.

    CAS  Google Scholar 

  27. R.A. Robinson and R.H. Stokes:Electrolyte Solutions, Butterworth’s, London, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mgaidi, A., Fürst, W. & Renon, H. Representation of the solubility of lead chloride in various chloride solutions with Pitzer’s model. Metall Trans B 22, 491–498 (1991). https://doi.org/10.1007/BF02654287

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654287

Keywords

Navigation