Skip to main content
Log in

An Empirical Model of the Gibbs Free Energy for Solutions of NaCl and CaCl2 of Arbitrary Concentration at Temperatures from 423.15 K to 623.15 K under Vapor Saturation Pressure

  • Geochemistry
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

An empirical model for the concentration dependence of the Gibbs free energy for solutions of chlorides of alkaline and alkaline earth metals in water is proposed. A simple analytical form of the Gibbs free energy makes it possible to obtain the equations of state for salt solutions that are equally accurate in the entire range of salt concentrations, from dilute solutions to solubility limits. The high accuracy of the thermodynamic description of solutions of high and intermediate concentration is ensured by the presence in the equation for the Gibbs free energy of two terms related to the Margules decomposition of the Gibbs free energy. Our form of the Gibbs free energy also contains a term that reproduces the thermodynamic behavior of solutions of electrolytes, which ensures high accuracy of the proposed model at low salt concentrations in the solution. Using the model, the equations of state for aqueous solutions of NaCl and CaCl2 at water vapor pressure in the temperature ranges of 423.15 K–573.15 K and 423.15 K–623.15 K were obtained, which corresponds to the parameters of ore-bearing solutions participating in the formation of low-temperature hydrothermal ore deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Bischoff, R. J. Rosenbauer, and R. O. Fournier, Geochim. Cosmochim. Acta 60, 7–16 (1996).

    Article  Google Scholar 

  2. L. Ya. Aranovich, I. V. Zakirov, N. G. Sretenskaya, et al., Geochem. Int. 48 (5), 446–455 (2010).

    Article  Google Scholar 

  3. L. Y. Aranovich and R. C. Newton, Contrib. Mineral. Petrol. 125, 200–212 (1996).

    Article  Google Scholar 

  4. N. S. Bortnikov, Geol. Ore Deposits 48, 1–22 (2006).

    Article  Google Scholar 

  5. M. V. Ivanov and S. A. Bushmin, Cornell Univ. Library, 2017. arXiv:1705.02901v2 [physics.chem-ph], pp. 1–26.

    Google Scholar 

  6. C. Liu and W. T. Lindsay, Jr., J. Solution Chem. 1, 45–69 (1972).

    Article  Google Scholar 

  7. K. S. Pitzer, J. C. Peiper, and R. H. Busey, J. Phys. Chem. Ref. Data 13, 1–102 (1984).

    Article  Google Scholar 

  8. D. G. Archer, J. Phys. Chem. Ref. Data 21, 793–829 (1992).

    Article  Google Scholar 

  9. R. Sun and J. Dubessy, Geochim. Cosmochim. Acta 88, 130–145 (2012).

    Article  Google Scholar 

  10. F. F. Hingerl, T. Wagner, D. A. Kulik, et al., Chem. Geol. 381, 78–93 (2014).

    Article  Google Scholar 

  11. K. S. Pitzer and C. S. Oakes, J. Chem. Eng. Data 39, 553–559 (1994).

    Article  Google Scholar 

  12. V. I. Zarembo, S. N. L’vov, and M. Yu. Matuzenko, Geokhimiya, No. 4, 610–614 (1980).

    Google Scholar 

  13. S. A. Wood, D. A. Crerar, S. L. Brantley, et al., Am. J. Sci. 284, 668–705 (1984).

    Article  Google Scholar 

  14. V. A. Ketsko, M. A. Urusova, and V. M. Valyashko, Zh. Neorg. Khim. 29, 2443–2445 (1984).

    Google Scholar 

  15. M. S. Gruszkiewicz and J. M. Simonson, J. Chem. Thermodyn. 37, 906–930 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ivanov.

Additional information

Original Russian Text © M.V. Ivanov, S.A. Bushmin, L.Y. Aranovich, 2018, published in Doklady Akademii Nauk, 2018, Vol. 479, No. 5, pp. 556–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.V., Bushmin, S.A. & Aranovich, L.Y. An Empirical Model of the Gibbs Free Energy for Solutions of NaCl and CaCl2 of Arbitrary Concentration at Temperatures from 423.15 K to 623.15 K under Vapor Saturation Pressure. Dokl. Earth Sc. 479, 491–494 (2018). https://doi.org/10.1134/S1028334X18040141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X18040141

Navigation