Skip to main content
Log in

Rate of nitrogen desorption from liquid iron-carbon and iron-chromium alloys with argon

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The rate of nitrogen desorption from inductively stirred liquid iron, iron-carbon, and iron-chromium alloys with argon carrier gas has been measured by the sampling method for a wide range of nitrogen, carbon, and chromium contents mainly at 1600 °C. The results obtained by the present work and other data of previous investigators are used to clarify the reaction mechanism of nitrogen desorption from liquid iron. The rate of nitrogen desorption from liquid iron and iron alloys is second order with respect to nitrogen content in the metal under the present condition, and mutual relationships among interfacial chemical reaction, liquid-phase mass transfer, and gas-phase mass transfer are elucidated. The effects of oxygen and sulfur on the rate of nitrogen desorption are given byk ' c = 3.15ƒN 2 [1/(1 + 300a0 + 130as)]. Carbon dissolved in iron increases the rate of nitrogen desorption, and chromium decreases it. The effects of these alloying elements can be explained by the change of the nitrogen activity in the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

k′ a :

apparent second order rate constant (cm/s pct)

k c :

apparent chemical reaction rate constant (cm4/s mol-N)

k′ c :

apparent chemical reaction rate constant (cm/s pct)

k m :

overall rate constant for nitrogen desorption defined by Eq. [9] (cm4/s mol-N)

kc o :

rate constant for the chemical reaction in pure liquid iron (cm/s pct)

kc (Fe-X):

rate constant for the chemical reaction in the liquid Fe-C or Fe-Cr alloy (cm/s pct)

k g :

mass transfer coefficient in the gas phase (cm/s)

k l :

mass transfer coefficient in the liquid phase (cm/s)

r :

reaction rate (mol-N/cm2 s)

r N 2 :

overall rate of nitrogen desorption or absorption (mol-N2/cm2 s)

pct N:

nitrogen content in the metal (wt pct)

C :

nitrogen content in the metal (mol-N/cm3)

A :

interfacial area between gas and metal (cm2)

V :

volume of liquid metal (cm3)

t :

reaction time (s)

p :

density of liquid metal (g/cm3)

a i :

activity ofi species in the liquid metal

f i :

activity coefficient ofi species in the liquid metal

θ i :

fractional surface coverage byi species

K :

equilibrium constant of Eq. [1]

K i :

adsorption coefficient ofi species

P :

total pressure (atm)

P N 2 :

partial pressure of nitrogen (atm)

R:

gas constant

T :

temperature (K)

V g :

flowrate of gas (1/min)

Sh:

Sherwood number (= kgd/D)

Re:

Reynolds number (= duρg/μ)

Sc:

Schmidt number (= μ/ρgD)

r s :

radius of the gas-metal interface (cm)

d :

diameter of the gas inlet nozzle (cm)

D :

interdiffusion coefficient of N2-Ar (cm2/s)

u :

gas velocity at the tip of the gas inlet nozzle (cm/s)

ρg:

density of gas (g/cm3)

μ:

viscosity of gas (g/s cm)

σ0 :

surface tension of pure liquid iron (dyne/cm)

σ:

surface tension of the liquid iron alloy (dyne/cm)

oΓi :

excess surface coverage of speciesi (mol/cm2)

b :

denotes the bulk liquid

s :

denotes the gas-metal interface

0:

denotes the initial value att = 0

l :

denotes mass transfer in the liquid phase

c :

denotes chemical reaction at the gas-metal interface

g :

denotes mass transfer in the gas phase

References

  1. T. Choh, T. Moritani, and M. Inouye:Trans. Iron Steel Inst. Jpn., 1979, vol. 19, pp. 221–30.

    CAS  Google Scholar 

  2. Y. K. Rao and H. G. Lee:Trans. Iron Steel Soc. AIME, 1984, vol. 4, pp. 1–10.

    CAS  Google Scholar 

  3. T. P. Battle and R. D. Pehlke:Ironmaking Steelmaking, 1986, vol. 13, pp. 176–89.

    CAS  Google Scholar 

  4. R. D. Pehlke and J. F. Elliiott:Trans. Metall. Soc. AIME, 1963, vol. 227, pp. 844–55.

    CAS  Google Scholar 

  5. M. Inouye and T. Choh:Trans. Iron Steel Inst. Jpn., 1968, vol. 8, pp. 134–45.

    Google Scholar 

  6. R. J. Fruehan and L. J. Martonik:Metall. Trans. B, 1980, vol. 11B, pp. 615–21.

    Article  ADS  CAS  Google Scholar 

  7. R. J. Fruehan and L. J. Martonik:Metall. Trans. B, 1981, vol. 12B, pp. 379–84.

    Article  ADS  CAS  Google Scholar 

  8. Y. K. Rao and H. G. Lee:Ironmaking Steelmaking, 1985, vol. 12, pp. 209–20, pp. 221–32.

    CAS  Google Scholar 

  9. T. Fuwa, S. Ban-ya, and T. Shinohara:Tetsu-to-Hagané, 1967, vol. 53, p. S 328.

    Google Scholar 

  10. S. Ban-ya, T. Shinohara, H. Tozaki, and T. Fuwa: in Proc. Int. Conf. “Science and Technology of Iron and Steel”, Tokyo, Iron and Steel Institute of Japan, 1971, pp. 538–42.

  11. S. Ban-ya, T. Shinohara, H. Tozaki, and T. Fuwa:Tetsu-to-Hagané, 1974, vol. 60, pp. 1443–53.

    CAS  Google Scholar 

  12. K. Mori and K. Suzuki:Trans. Iron Steel Inst. Jpn., 1970, vol. 10, pp. 232–38.

    Google Scholar 

  13. S. Anezaki, K. Shimizu, and T. Mori:Tetsu-to-Hagané, 1971, vol. 57, pp. 1109–22.

    CAS  Google Scholar 

  14. K. Narita, S. Koyama, T. Makino, and M. Okamura:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 444–53.

    Google Scholar 

  15. T. Choh, T. Takebe, and M. Inouye:Tetsu-to-Hagané, 1981, vol. 67, pp. 2665–74.

    CAS  Google Scholar 

  16. H. Kajioka, K. Harashima, S. Mizoguchi, and K. Sakakura:Tetsu-to-Hagané, 1987, vol. 73, pp. 1559–66.

    Google Scholar 

  17. M. Byrne and G. R. Belton:Metall. Trans. B, 1983, vol. 14B, pp. 441–49.

    Article  ADS  CAS  Google Scholar 

  18. F. Ishii, S. Ban-ya, and T. Fuwa:Tetsu-to-Hagané, 1982, vol. 68, pp. 946–55.

    CAS  Google Scholar 

  19. A. Kikuchi, S. Taniguchi, T. Tadaki, and S. Maeda: Proc. Symp. Int. Union, “Theoretical and Applied Mechanics”, Cambridge, U.K., 1982, pp. 79–92.

  20. A. Kikuchi, S. Taniguchi, and K. Arai: Proc. 95th Annual Meeting of Jpn. Inst. Metals, 1984, No. 540.

  21. M. Takahashi, H. Matsuda, M. Sano, and K. Mori:Tetsu-to-Hagané, 1986, vol. 72, pp. 419–25.

    CAS  Google Scholar 

  22. K. Kadoguchi, M. Sano, and K. Mori:Tetsu-to-Hagané, 1985, vol. 71, pp. 70–77.

    CAS  Google Scholar 

  23. P. C. Glaws and R. J. Fruehan:Metall. Trans. B, 1985, vol. 16B, pp. 551–59.

    Article  ADS  CAS  Google Scholar 

  24. L. S. Darken and E. T. Turkdogan:Heterogenous Kinetics at Elevated Temperatures, G. R. Belton and W. L. Worrell, eds., Plenum Press, New York, NY, 1970, pp. 25–95.

    Google Scholar 

  25. G. R. Belton:Metall. Trans. B, 1976, vol. 7B, pp. 35–42.

    ADS  CAS  Google Scholar 

  26. P. Kozakevitch and G. Urbain:Mem. Sci. Rev. Meta., 1961, vol. 58, pp. 517–34.

    CAS  Google Scholar 

  27. F. A. Halden and W. D. Kingery:J. Phys. Chem., 1955, vol. 59, pp. 557–59.

    Article  CAS  Google Scholar 

  28. A. Kasama, A. McLean, W. A. Miller, Z. Monta, and M. J. Ward:Can. Metall. Q., 1983, vol. 22, pp. 9–17.

    CAS  Google Scholar 

  29. W. Esche and O. Peter:Arch. Eisenhüttenw., 1956, vol. 27, pp. 355–66.

    Google Scholar 

  30. A.W. Cramb and G. R. Belton:Metall. Trans. B, 1981, vol. 12B, pp. 699–704.

    Article  ADS  CAS  Google Scholar 

  31. B. F. Dyson:Trans. TMS-AIME, 1963, vol. 227, pp. 1098–1102.

    CAS  Google Scholar 

  32. F. Ishii and T. Fuwa:Tetsu-to-Hagané, 1981, vol. 67, pp. 736–45, pp. 746–54.

    CAS  Google Scholar 

  33. F. Ishii, S. Ban-ya, and T. Fuwa:Tetsu-to-Hagané, 1982, vol. 68, pp. 946–54, pp. 1551–59.

    CAS  Google Scholar 

  34. F. Ishii, Y. Iguchi, and S. Ban-ya:Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 128–32.

    Google Scholar 

  35. D. Janke and W. A. Fischer:Arch. Eisenhüttenw., 1976, vol. 47, pp. 147–51.

    CAS  Google Scholar 

  36. S. Ban-ya and J. Chipman:Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 133–43.

    CAS  Google Scholar 

  37. P. C. Glaws and R. J. Fruehan:Metall. Trans. B, 1986, vol. 17B, pp. 317–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the G. R. Fitterer Symposium on Nitrogen in Metals and Alloys held at the 114th annual AIME meeting in New York, February 24–28, 1985, under the auspices of the ASM-MSD Thermodynamic Activity Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban-Ya, S., Ishii, F., Iguchi, Y. et al. Rate of nitrogen desorption from liquid iron-carbon and iron-chromium alloys with argon. Metall Trans B 19, 233–242 (1988). https://doi.org/10.1007/BF02654207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654207

Keywords

Navigation