Skip to main content
Log in

Reaction chemistry and resulting surface structure of HgCdTe etched in CH4/H2 and H2 ECR plasmas

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on several new aspects of etching of Hg1−xCdxTe (x = 0.22), HgTe, and CdTe in CH4/H2/Ar plasmas generated by an electron cyclotron resonance plasma source. Using a residual gas analyzer, we have identified elemental Hg, TeH2, Te(CH3)2, and Cd(CH3)2 as the primary reaction products escaping from a HgCdTe surface during the plasma exposure. We have also demonstrated that a bias is not needed to etch HgCdTe at moderate temperatures (30-40°C), as previously suggested by other researchers. We have also developed a technique that avoids the formation of hydrocarbon polymer films on a HgCdTe sample during etching. Moreover, we have examined by x-ray photoelectron spectroscopy analysis and ellipsometry the surface condition of HgCdTe resulting from etching with this technique at zero bias. After exposure to the CH4/H2Ar plasma (or to a H2/Ar plasma only), the HgCdTe samples exhibited a depletion of the HgTe component in the near surface region (increase of the x-value). The depletion covered a range from virtually x = 1 after H2/Ar (10:2 in sccm) etching to values 0.4 < x < 0.5 after CH4/H2Ar (7:7:2 in seem) etching. Exposures to the plasmas were found to result in surface roughening of HgCdTe, however, plasmas rich in H2 were observed to cause significantly rougher surfaces than plasmas with small H2/CH4 ratios. This difference in the resulting surface condition is attributed solely to chemical effects since the respective ion energies are considered to be below the damage threshold for HgCdTe in both cases. We also investigated the etching of HgTe and CdTe single crystals. The etch rate of HgTe was found to be over one order of magnitude higher than that of CdTe under similar conditions. This large difference in etch rates is assumed to be responsible for the observed preferential etching of the HgTe component indicated by the HgTe depletion of the HgCdTe surface region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Solzbach and H.J. Richter,Surf. Sci. 97, 191 (1980).

    Article  CAS  Google Scholar 

  2. M.V. Blackman, D.E. Charlton, M.D. Jenner, D.R. Purdy, J.T.M Wotherspoon, C.T. Elliot and A.M. White,Elect. Lett. 23, 978 (1987).

    Article  Google Scholar 

  3. P. Brogowski, H. Mucha and J. Piotrowski,Phys. Stat. Sol. A 114, K37 (1989).

    Article  CAS  Google Scholar 

  4. G. Bahir and E. Finkman,J. Vac. Sci. Technol. A 7 (2), 348 (1989).

    Article  CAS  Google Scholar 

  5. J.E. Spencer, J.H. Dinan, P.R. Boyd, H. Wilson and S.E. Buttrill,J. Vac. Sci. Technol. A 7 (3), 676 (1989).

    Article  CAS  Google Scholar 

  6. R. Cheung, S. Thorns, S.P. Beamont, G. Doughty, V. Law and C.D.W. Wilkinson,Electron. Lett. 23 (16), 857 (1987).

    Article  Google Scholar 

  7. T.R. Hayes, M.A. Dreisbach, P.M. Thomas, W.C. Dautremont-Smith and L.A. Heimbrook,J. Vac. Sci. Technol. B 7 (5), 1130 (1989).

    Article  CAS  Google Scholar 

  8. C. Constantine, D. Johnson, S. J. Pearton, U.K. Chakrabarti, A.B. Emerson, W.S. Hobson and A.P. Kinsella,J. Vac. Sci. Technol. B 8 (4), 596 (1990).

    Article  CAS  Google Scholar 

  9. A. Semu and P. Silverberg,Semicond. Sci. Technol. 6, 287 (1991).

    Article  CAS  Google Scholar 

  10. J.E. Spencer, T.R. Schimert, J.H. Dihan, Darrel Endres and T.R. Hayes,J. Vac. Sci. Technol. A 8 (3), 1690 (1990).

    Article  CAS  Google Scholar 

  11. A. Semu, L. Montelius, P. Leech, D. Jamieson and P. Silverberg,Appl. Phys. Lett. 59 (14), 1752 (1991).

    Article  CAS  Google Scholar 

  12. J.L. Elkind and Glennis J. Orloff,J. Vac. Sci. Technol. A 10 (4), 1106 (1992).

    Article  CAS  Google Scholar 

  13. S.J. Pearton and F. Ren,J. Vac. Sci. Technol. B 11 (1), 15 (1993).

    Article  CAS  Google Scholar 

  14. G.J. Orloff, John A. Wollam, Ping He, William A. McGahan, J.R. McNeil, R.D. Jacobson and B. Johs,Thin Solid Films 233,46(1993).

    Google Scholar 

  15. C.R. Eddy, E.A. Dobisz, C.A. Hoffmann and J.R. Meyer,Appl. Phys. Lett. 62 (19), 2362 (1993).

    Article  CAS  Google Scholar 

  16. C.R. Eddy, C.A. Hoffmann, J.R. Meyer and E.A. Bobisz,J. Electron. Mater. 22 (8), 1055 (1993).

    CAS  Google Scholar 

  17. C.R. Eddy, E.A. Dobisz, J.R. Meyer and C.A. Hoffmann,J. Vac. Sci. Technol. A 11 (4), 1763 (1993).

    Article  CAS  Google Scholar 

  18. M. Neswal, K.H. Gresslehner, K. Lischka and K. Lübke,J. Vac. Sci. Technol. B 11 (3), 551 (1993).

    Article  CAS  Google Scholar 

  19. J. Asmusss,J. Vac. Sci. Technol. A 7 (3), 883 (1989).

  20. L. Henry, C. Vaudry and P. Granjoux,Electron. Lett. 23,1253 (1987).

    Article  Google Scholar 

  21. A.H. McDaniel, B. Liu and R.F. Hicks,J. Cryst. Growth 124, 676 (1992).

    Article  CAS  Google Scholar 

  22. H.V. Boenig,Plasma Science and Technology, (München, Germany: Carl Hanser Verlag, 1982).

    Google Scholar 

  23. O.J. Glembocki, B.E. Taylor and E.A. Dobisz,J. Vac. Sci. Technol. B 9 (6), 3546 (1991).

    Article  CAS  Google Scholar 

  24. D.R. Rhiger,J. Electron. Mater. 22 (8), 1993.

  25. D.E. Aspnes,Thin Solid Films 89, 249 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, R.C., Seelmann-Eggebert, M. & Richter, H.J. Reaction chemistry and resulting surface structure of HgCdTe etched in CH4/H2 and H2 ECR plasmas. J. Electron. Mater. 24, 1155–1160 (1995). https://doi.org/10.1007/BF02653068

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02653068

Key words

Navigation