Skip to main content
Log in

Investigation of the reversibility of deformation in silicon sheets

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have investigated the degree to which plastic deformation is reversible in silicon by bending and re-flattening initially defect-free single-crystal Czochralski silicon samples using four-point bending to simulate the deformation experienced during ribbon crystal growth. Optical and scanning electron microscopy of etched sample cross-sections after single bending and bending and re-flattening at 1100° C and 1200° C revealed that the dislocation densities in the re-flattened samples were lower than in singly-bent samples by 60–90%, indicating that dislocations are either being annihilated within the silicon bulk or are exiting the silicon at the free surfaces. There was little evidence of dislocation interaction in the singly-bent single-crystal samples investigated with transmission electron microscopy, so the latter mechanism is more likely. Although the re-flattened specimens have a lower dislocation density, there is little improvement in the minority-carrier diffusion length, measured by electron-beam induced current, which in all cases ranged from 10–20 μm. Since the minority-carrier diffusion length changed little, even with a change in dislocation density from 106 dislocations/cm2–108 dislocations/cm2, other defects must be controlling the diffusion length. There is some correlation between dislocation density and minority-carrier diffusion length within a given sample, but this may be due to indirect effects such as generation of point defects by moving dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Seidensticker, R. E. Kothmann, J. P. McHugh, C. S. Duncan, R. H. Hopkins, P. D. Blais, J. R. Davis and A. Rohatgi, “Computer Modeling of Dendritic Web Growth Process and Characterization of the Material.” In Thirteenth IEEE Photovoltaic Specialists Conf., pages 358–362, 1978.

  2. R. G. Seidensticker and R. H. Hopkins, J. Cryst. Growth50, 221 (1980).

    Article  CAS  Google Scholar 

  3. J. P. Kalejs, B. H. Mackintosh and T. Surek, J. Cryst. Growth50, 175 (1980).

    Article  CAS  Google Scholar 

  4. A. Baghdadi and R. W. Gurtler, J. Cryst. Growth50, 236 (1980).

    Article  CAS  Google Scholar 

  5. R. G. Seidensticker R. H. Hopkins and J. Schruben, J. Cryst. Growth65, 307 (1983).

    Article  CAS  Google Scholar 

  6. J. C. Lambropoulos, J. W. Hutchinson, R. O. Bell, B. Chalmers and J. P. Kalejs, J. Cryst. Growth65, 324 (1983).

    Article  CAS  Google Scholar 

  7. V. K. Mathews and T. S. Gross, Scripta Met.,21, 117 (1987).

    Article  CAS  Google Scholar 

  8. S. Utku, S. K. Ray and B. K. Wada, Computers and Structures23, 657 (1986).

    Article  Google Scholar 

  9. J. A. Spitznagel, R. G. Seidensticker, S. Y. lien, J. P. McHugh and R. H. Hopkins, J. Cryst. Growth82, 39 (1987).

    Article  CAS  Google Scholar 

  10. R. Gleichmann, M. D. Vaudin and D. G. Ast, Phil. Mag. A51, 449 (1985).

    CAS  Google Scholar 

  11. X. Baillin, J. Pelissier, J. J. Bacmann, A. Jacques and A. George, Phil. Mag. A55, 143 (1987).

    CAS  Google Scholar 

  12. A. Jacques, A. George, X. Baillin and J. J. Bacmann, Phil. Mag. A55, 165 (1987).

    CAS  Google Scholar 

  13. R. O. Bell and J. I. Hanoka, J. Appl. Phys.53, 1741 (1982).

    Article  CAS  Google Scholar 

  14. G. W. Hollenberg, G. R. Terwilliger and R. S. Gordon. J. Amer. Cer. Soc.54, 196 (1971).

    Article  CAS  Google Scholar 

  15. J. P. Kalejs, “Stress Studies in EFG,” Tech. Report DOE/JPL 956312/07, Mobil Solar Energy Corp., Jan. 1–March 31 1984.

  16. M. Wright Jenkins, J. Electrochem. Soc.124, 757 (1977).

    Article  CAS  Google Scholar 

  17. D. G. Schimmel, J. Electrochem. Soc.123, 734 (1976).

    Article  CAS  Google Scholar 

  18. M. M. Myshlyaev, V. I. Nikitenko and V. I. Nesterenko, Phys. Status Solidi 36, 89 (1969).

    CAS  Google Scholar 

  19. V. K. Mathews and T. S. Gross, Scripta Met.20, 1677 (1986).

    Article  CAS  Google Scholar 

  20. J. P. Kalejs, “Stress and efficiency studies in EFG,” Tech. Report DOE/JPL 956312-15, Mobil Solar Energy Corp., Jan. 1–March 31 (1985).

  21. R. C. Newman, Carbon in Crystalline Silicon, in J. C. Mikkelsen, Jr., S. J. Pearton, J. W. Corbett and S. J. Pennycook, eds., Oxygen, Carbon, Hydrogen and Nitrogen in Crystalline Silicon, pages 403–417, Mater. Res. Soc., MRS, 1986.

  22. S. L. Hyland, G. Perreault, J. Wohlgemuth and D. G. Ast, J. Cryst. Growth, to be published (1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyland, S.L., Dubé, C. & Ast, D.G. Investigation of the reversibility of deformation in silicon sheets. J. Electron. Mater. 19, 873–879 (1990). https://doi.org/10.1007/BF02652911

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652911

Key words

Navigation