Skip to main content
Log in

NiTi and NiTi-TiC composites: Part IV. Neutron diffraction study of twinning and shape-memory recovery

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Neutron diffraction measurements of internal elastic strains and crystallographic orientation were performed during compressive deformation of martensitic NiTi containing 0 vol pct and 20 vol pct TiC particles. For bulk NiTi, some twinning takes place upon initial loading below the apparent yield stress, resulting in a low apparent Young's modulus; for reinforced NiTi, the elastic mismatch from the stiff particles enhances this effect. However, elastic load transfer between matrix and reinforcement takes place above and below the composite apparent yield stress, in good agreement with continuum mechanics predictions. Macroscopic plastic deformation occurs by matrix twinning, whereby (1 0 0) planes tend to align perpendicular to the stress axis. The elastic TiC particles do not alter the overall twinning behavior, indicating that the mismatch stresses associated with NiTi plastic deformation are fully relaxed by localized twinning at the interface between the matrix and the reinforcement. For both bulk and reinforced NiTi, partial reverse twinning takes place upon unloading, as indicated by a Bauschinger effect followed by rubberlike behavior, resulting in very low residual stresses in the unloaded condition. Shape-memory heat treatment leads to further recovery of the preferred orientation and very low residual stresses, as a result of self-accommodation during the phase transformations. It is concluded that, except for elastic load transfer, the thermal, transformation, and plastic mismatches resulting from the TiC particles are efficiently canceled by matrix twinning, in contrast to metal matrix composites deforming by slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Perkins:Met. Forum, 1981, vol. 4, pp. 153–63.

    CAS  Google Scholar 

  2. T. Saburi and S. Nenno: inSolid-Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 1455–79.

    Google Scholar 

  3. K. Otsuka and K. Shimizu:Int. Met. Rev., 1986, vol. 31, pp. 93–114.

    CAS  Google Scholar 

  4. K. Shimizu and T. Tadaki: inShape Memory Alloys, H. Funakubo, ed., Gordon and Breach, New York, NY, 1987, pp. 1–60.

    Google Scholar 

  5. T. Honma: inShape Memory Alloys, H. Funakubo, ed., Gordon and Breach, New York, NY, 1987, pp. 61–115.

    Google Scholar 

  6. C.M. Wayman and J.D. Harrison:J. Met., 1989, vol. 41, pp. 26–28.

    CAS  Google Scholar 

  7. E. Hombogen: inProgress in Shape Memory Alloys, S. Euken, ed., DGM, Oberursel, Germany, 1992, pp. 3–19.

    Google Scholar 

  8. C.M. Wayman:MRS Bull, 1993, vol. 18, pp. 49–56.

    CAS  Google Scholar 

  9. D. Mari and D.C. Dunand:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2833–47.

    CAS  Google Scholar 

  10. K.L. Fukami-Ushiro, D. Mari, and D.C. Dunand:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 183–191.

    Article  CAS  Google Scholar 

  11. K.L. Fukami-Ushiro and D.C. Dunand:Metall. Mater. Trans. A, 1996, vol. 27A, pp. 193–203.

    Article  CAS  Google Scholar 

  12. D. Mari, L. Bataillard, D.C. Dunand, and R. Gotthardt:J. Phys IV, 1995, vol. 5, pp. 659–664.

    CAS  Google Scholar 

  13. I.C. Noyan and J.B. Cohen:Residual Stress, Springer-Verlag, New York, NY, 1987, pp. 63–116.

    Google Scholar 

  14. M.T. Hutchings: inMeasurement of Residual and Applied Stress Using Neutron Diffraction, M.T. Hutchings and A.D. Krawitz, eds., Kluwer, Dordrecht, 1992, pp. 3–18.

    Google Scholar 

  15. A.D. Krawitz: inMeasurement of Residual and Applied Stress Using Neutron Diffraction, M.T. Hutchings and A.D. Krawitz, eds., Kluwer, Dordrecht, 1992, pp. 405–20.

    Google Scholar 

  16. G.E. Bacon:Neutron Diffraction, Oxford University Press, Oxford, United Kingdom, 1962, pp. 72–73.

    Google Scholar 

  17. M.A.M. Bourke, J.A. Goldstone, M.G. Stout, A.C. Lawson, and J.E. Allison: inResidual Stresses in Composites: Measurement Modeling and Effects on Thermomechanical Behavior, E.V. Barrera and I. Dutta, eds., TMS, Warrendale, PA, 1993, pp. 67–77.

    Google Scholar 

  18. M.A.M. Bourke, J.A. Goldstone, N. Shi, J.E. Allison, M.G. Stout, and A.C. Lawson:Scripta Metall. Mater., 1993, vol. 29, pp. 771–76.

    Article  CAS  Google Scholar 

  19. J.A. Goldstone: Los Alamos National Laboratory, Los Alamos, NM, private communication, 1990.

  20. R.B. Von Dreele, J.D. Jorgensen, and C.G. Windsor:J. Appl. Crystal, 1982, vol. 15, pp. 581–89.

    Article  Google Scholar 

  21. A.C. Larson and R.B. Von Dreele: Los Alamos National Laboratory Report No. LA-UR 86-748, Los Alamos, NM, 1986.

  22. CM. Jackson, H.J. Wagner, and R.J. Wasilewski: NASA-SP 5110, 1972, p. 49.

  23. The CRC Materials Science and Engineering Handbook, J. Shackelford and W. Alexander, eds., CRC Press, Boca Raton, FL, 1992, pp. 358–436.

    Google Scholar 

  24. Y. Kudoh, M. Tokohami, S. Miyazaki, and K. Otsuka:Acta Metall., 1985, vol. 33, pp. 2049–56.

    Article  CAS  Google Scholar 

  25. W. Bührer, R. Gotthardt, A. Kulik, and O. Mercier:J. Phys., 1982, vol. 43, pp. 219–24.

    Google Scholar 

  26. A.A. Golestaneh and J.M. Carpenter:Acta Metall. Mater., 1990, vol. 38, pp. 1291–1305.

    Article  CAS  Google Scholar 

  27. J.W. Hutchinson and R.M. McMeeking: inFundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Boston, MA, 1993, pp. 158–73.

    Google Scholar 

  28. P.E. McHugh, R.J. Asaro, and C.F. Shih: inFundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Boston, MA, 1993, pp. 139–57.

    Google Scholar 

  29. T.W. Clyne and P.J. Withers:An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, United Kingdom, 1993, pp. 44–165.

    Google Scholar 

  30. T.M. Brill, S. Mittelbach, W. Assmus, M. Mullner, and B. Luthi:J. Phys.: Condens. Mater., 1991, vol. 3, pp. 9621–27.

    Article  CAS  Google Scholar 

  31. S. Spinner and A.G. Rozner:J. Acoust. Soc. Am., 1966, vol. 40, pp. 1009–15.

    Article  CAS  Google Scholar 

  32. W. Bührer, R. Gotthardt, and M.S. Wechsler: inInt. Conf. on Martensitic Transformations, Japan Institute of Metals, Sendai, 1986, pp. 687–702.

    Google Scholar 

  33. D.C. Dunand: inThe Encyclopedia of Advanced Materials, D. Bloor, R.J. Brook, M.C Flemings, and S. Mahajan, eds., Pergamon Press, Elmsford, NY, 1994, pp. 1502–07.

    Google Scholar 

  34. M.A.M. Bourke, J.A. Goldstone, M.G. Stout, and A. Needleman: inFundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Boston MA, 1993, pp. 61–80.

    Google Scholar 

  35. R. Chang and L.J. Graham:J. Appl. Phys., 1966, vol. 37, pp. 3778–83.

    Article  CAS  Google Scholar 

  36. P.B. Prangneil, T. Downes, W.M. Stobbs, and P.J. Withers:Acta Metall. Mater., 1994, vol. 42, pp. 3425–36.

    Article  Google Scholar 

  37. A.J. Allen, M.A.M. Bourke, S. Dawes, M.T. Hutchings, and P.J. Withers:Acta Metall. Mater., 1992, vol. 40, pp. 2361–73.

    Article  CAS  Google Scholar 

  38. C.A. Lewis, W.M. Stobbs, and P.J. Withers:Mater. Sci. Eng., 1993, vol. A171,pp. 1–11.

    CAS  Google Scholar 

  39. T. Onda, Y. Bando, T. Ohba, and K. Otsuka:Mater. Trans. JIM, 1992, vol. 33, pp. 354–59.

    CAS  Google Scholar 

  40. K. Otsuka, T. Tamura, and K. Shimizu:Phys. Status Solidi, 1971, vol. 5, pp. 457–70.

    Article  CAS  Google Scholar 

  41. S.P. Gupta and A.A. Johnson:Trans. Jpn. Inst. Met., 1973, vol. 14, pp. 292–302.

    CAS  Google Scholar 

  42. O. Matsumoto, S. Myiazaki, K. Otsuka, and H. Tamura:Acta Metall., 1987, vol. 35, pp. 2137–44.

    Article  CAS  Google Scholar 

  43. B.A. Bilby and A.G. Crocker:Proc. R. Soc. Lond., 1965, vol. 288A, pp. 240–55.

    Google Scholar 

  44. K.M. Knowles and D.A. Smith:Acta Metall., 1981, vol. 29, pp. 101–10.

    Article  CAS  Google Scholar 

  45. K. Mandagopal, J. Singh, and S. Banerjee:Scripta Metall. Mater., 1991, vol. 25, pp. 2153–58.

    Article  Google Scholar 

  46. M.F. Ashby: in2nd Int. Conf. on the Strength of Metals and Alloys, Pacific Grove, CA, ASM, Metals Park, OH, 1970, pp. 507–41.

    Google Scholar 

  47. M.F. Ashby:Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  48. R.J. Wasilewski: inShape Memory Effects in Alloys, J. Perkins ed., Plenum Publishing, NY, 1975, pp. 245–71.

    Google Scholar 

  49. J.F. Nye:Physical Properties of Crystals, Oxford University Press, Oxford, United Kingdom, 1985.

    Google Scholar 

  50. J.D. Eshelby:Proc. R. Soc. Lond., 1957, vol. A241, p. 376.

    Google Scholar 

  51. P.J. Withers, W.M. Stobbs, and O.B. Pedersen:Acta Metall., 1989, vol. 37, pp. 3061–84.

    Article  CAS  Google Scholar 

  52. H.J. Frost and M.F. Ashby:Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Elmsford, NY, 1982, p. 166.

    Google Scholar 

  53. ASM Handbook: Alloy Phase Diagrams, ASM, Materials Park, OH, 1992, p. 319.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunand, D.C., Mari, D., Bourke, M.A.M. et al. NiTi and NiTi-TiC composites: Part IV. Neutron diffraction study of twinning and shape-memory recovery. Metall Mater Trans A 27, 2820–2836 (1996). https://doi.org/10.1007/BF02652374

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652374

Keywords

Navigation