Skip to main content
Log in

In Situ High-Energy X-Ray Diffraction Study of Load Partitioning in Nb/NiTi Nanocomposite Plate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A nanocomposite composed of Nb nanosheets and NiTi shape memory alloy was fabricated by multiple cold rolling. High-energy X-ray diffraction measurements were performed to probe the deformation behavior of each component during uniaxial tensile loading at different temperatures. It is demonstrated that, as the samples were tested at 203 K (−70 °C) and 298 K (25 °C), the NiTi matrix exhibited a martensite reorientation and a stress-induced phase transformation, respectively, while the Nb nanosheets showed a higher elastic strain (~2.5 pct) in comparison to that (~0.9 pct) of a sample tested at a higher temperature of 453 K (180 °C). The Nb nanosheets, with a volume fraction of only 13 pct, undertake an applied stress of ~90 pct as the NiTi matrix undergoes the martensitic transformation. It appears that the strengthening of Nb nanosheets is optimized as the matrix deforms by a stress-induced phase transformation or by a martensite reorientation in nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, and S.H. Hong: Adv. Mater., 2005, vol. 17, pp. 1377–81.

    Article  Google Scholar 

  2. S. Hwang, C. Nishimura, and P.G. McCormick: Scripta Mater., 2001, vol. 44, pp. 2457–62.

    Article  Google Scholar 

  3. F. Audebert, F. Prima, M. Galano, M. Tomut, P.J. Warren, I.C. Stone, and B. Cantor: Mater. Trans., 2002, vol. 43, pp. 2017–25.

    Article  Google Scholar 

  4. L. Lu, M. Lai, and W. Liang: Compos. Sci. Technol., 2004, vol. 64, pp. 2009–14.

    Article  Google Scholar 

  5. I. Shao, P.M. Vereecken, C.L. Chien, P.C. Searson, and R.C. Cammarata: J. Mater. Res., 2002, vol. 17, pp. 1412–18.

    Article  Google Scholar 

  6. S.F. Hassan and M. Gupta: Mater. Sci. Technol., 2004, vol. 20, pp. 1383–88.

    Article  Google Scholar 

  7. X.C. Li, Y. Yang, and X.D. Cheng: J. Mater. Sci., 2004, vol. 39, pp. 3211–12.

    Article  Google Scholar 

  8. L. Thilly, M. Veron, O. Ludwig, F. Lecouturier, J.P. Peyrade, and S. Askenazy: Philos. Mag., 2002, vol. A82, pp. 925–42.

    Article  Google Scholar 

  9. D. Raabe, K. Miyake, and H. Takahara: Mater. Sci. Eng. A, 2000, vol. 291, pp. 186–97.

    Article  Google Scholar 

  10. C. Biselli and D.G. Morris: Acta Mater., 1996, vol. 44, pp. 493–504.

    Article  Google Scholar 

  11. S.I. Hong and M.A. Hill: Acta Mater., 1998, vol. 46, pp. 4111–22.

    Article  Google Scholar 

  12. J.B. Liu, L. Zhang, Y.W. Zeng, and L. Meng: Scripta Mater., 2011, vol. 64, pp. 665–68.

    Article  Google Scholar 

  13. K. Otsuka and C.M.Wayman: Shape Memory Materials, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  14. T.W. Duerig, K.N. Melton, D. Stoeckel, and C.M. Wayman: Engineering Aspects of Shape Memory Alloys, Butterworth–Heinemann, London, 1990.

    Google Scholar 

  15. G.A. Sun, X.L. Wang, Y.D. Wang, W.C. Woo, H. Wang, X.P. Liu, B. Chen, Y.Q. Fu, L.S. Sheng, and Y. Ren: Mater. Sci. Eng. A, 2013, vol. 560 (10), pp. 458–65.

    Article  Google Scholar 

  16. S.J. Hao, L.S. Cui, Y.D. Wang, D.Q. Jiang, C. Yu, J. Jiang, D.E. Brown, and Y. Ren: Appl. Phy. Lett., 2011, vol. 99, p. 024102.

    Article  Google Scholar 

  17. S.J. Hao, D.Q. Jiang, L.S. Cui, Y.D. Wang, X.B. Shi, Z.H. Nie, D.E. Brown, and Y. Ren: Appl. Phy. Lett., 2011, vol. 99, p. 084103.

    Article  Google Scholar 

  18. A. Kelly and K.N. Street, Proc. R. Soc. Lond. A, 1972, vol 328, pp. 283–93.

    Article  Google Scholar 

  19. K. Otsuka and X. Ren: Prog. Mater. Sci. 2005, vol 50, pp. 511–678.

    Article  Google Scholar 

  20. L. Thilly, P.O. Renault, V. Vidal, F. Lecouturier, and S. Van Petegem: Appl. Phys. Lett. 2006, vol 88, p. 191906.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the key National Natural Science Foundation of China (NSFC) (51231008), the National 973 program of China (2012CB619403), the NSFC (51471187 and 11474362), and the Key Project of Chinese Ministry of Education (313055). The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Science under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lishan Cui or Yang Ren.

Additional information

Manuscript submitted February 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Cui, L., Hao, S. et al. In Situ High-Energy X-Ray Diffraction Study of Load Partitioning in Nb/NiTi Nanocomposite Plate. Metall Mater Trans A 46, 3271–3275 (2015). https://doi.org/10.1007/s11661-015-2816-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2816-5

Keywords

Navigation