Skip to main content
Log in

Thermal-Mechanical fatigue of Ti-48Al-2V alloy and its composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal-mechanical fatigue (TMF) and isothermal fatigue (IF) of a Ti-48Al-2V alloy and its composite, reinforced with TiB2 particles, were studied. In-phase TMF testing was conducted under the condition of a minimum temperatureT min = 100 °C and a maximum temperatureT max, which ranged from 750 °C to 1400 °C. The applied cyclic stress ranges were 2.8 to 28 MPa and 4.2 to 42 MPa. The IF tests were carried out at aT max. The TMF and IF lives are longer for lowerT max and for smaller stress ranges in both the matrix alloy and its composite. The IF life at a givenT max is shorter than the TMF life in the matrix alloy at all temperatures employed and in the composite only at higher temperatures. At lower temperatures, the TMF and IF lives are essentially the same in the composite. The resistance to TMF is similar in the matrix alloy and the composite, but the IF resistance is greater in the composite than in the matrix alloy. The proposed TMF mechanism is nucleation and growth of voids on interlamellar plate, twin, and grain boundaries; their interlamellar, translamellar, and intergranular linkage; intergranular separation; and disintegration of lamellar structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Kampe, J.D. Bryant, and L. Christodoulou:Metall. Trans. A, 1991, vol. 22A, pp. 447–54.

    CAS  Google Scholar 

  2. P.A. Bartollota and M.J. Verrilli: NASA Technical Memorandum 105723, NASA Lewis Research Center, Cleveland, OH, Aug. 1992.

  3. H. Sehitoglu:Trans. ASME, J. Eng. Mater. Technol., 1985, vol. 107, pp. 221–26.

    Article  Google Scholar 

  4. D.A. Boismier and H. Sehitoglu:Trans. ASME, J. Eng. Mater. Technol., 1990, vol. 112, pp. 68–79.

    Article  CAS  Google Scholar 

  5. N.J. Marchand, R.M. Pelloux, and B. Ilschner:Eng. Fract. Mech., 1988, vol. 31, pp. 535–51.

    Article  Google Scholar 

  6. G.R. Halford, M.J. Verrilli, S. Kalluri, F.J. Ritzert, R.E. Duckert, and F.A. Holland: NASA Technical Memorandum 4225, NASA Lewis Research Center, Cleveland, OH, April 1991.

  7. J.J. Pernot: Master’s Thesis, AFIT/GAE/AA/87D-18, Air Force Institute of Technology, Dayton, OH, Dec. 1987.

  8. T.S. Cook, K.S. Kim, and R.L. McKnight:Low Cycle Fatigue, ASTM STP 942, H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Leis, Eds., ASTM, Philadelphia, PA, 1988, pp. 692–708.

    Google Scholar 

  9. T. Koizumi and M. Okazaki:Fatigue Eng. Mater. Struct., 1979, vol. 1, pp. 509–20.

    Article  CAS  Google Scholar 

  10. K. Kuwabara, A.N. Nitta, and T. Kitamura:Advances in Life Prediction Methods, D.A. Woodford and J.R. Whitehead, eds., ASME, New York, NY, 1983, pp. 131–41.

    Google Scholar 

  11. H. Sehitoglu and J.D. Morrow: ASME PVP, 1983, vol. 71, pp. 93-109.

  12. H. Sehitoglu and M. Karasek:Trans. ASME, 1986, vol. 108, pp. 192–98.

    CAS  Google Scholar 

  13. N. Kamiya and O. Kamigaito:J. Mater. Sci., 1979, vol. 14, pp. 573–82.

    Article  CAS  Google Scholar 

  14. S. Majumdar:ASME PVP, 1987, vol. 123, pp. 31–36.

    Google Scholar 

  15. B.S. Majumdar and G.M. Newaz:Composite Materials: Fatigue and Fracture (Third Volume), ASTM STP 1110, T.K. O’Brien, ed., ASTM, Philadelphia, PA, 1991, pp. 732–52.

    Google Scholar 

  16. M. Karayaka and H. Sehitoglu:Metall. Trans. A, 1991, vol. 22A, pp. 697–707.

    CAS  Google Scholar 

  17. T. Nicholas, M.L. Heil, and G.K. Haritos:Int. J. Fracture, 1989, vol. 41, pp. 157–76.

    Article  CAS  Google Scholar 

  18. J.G. Gayda, T.P. Gobb, and A.D. Freed: NASA Technical Memorandum 101984, NASA Lewis Research Center, Cleveland, OH, April 1988.

  19. R.W. Neu and H. Sehitoglu:Metall. Trans. A, 1989, vol. 20A, pp. 1755–67.

    CAS  Google Scholar 

  20. K.D. Sheffler:Thermal Fatigue of Materials and Components, ASTM STP 612, D.A. Spera and D.F. Mowbray, eds., ASTM, Philadelphia, PA, 1976, pp. 214–26.

    Google Scholar 

  21. N. Marchand, G.L’ Espe’rance, and R.M. Pelloux:Low Cycle Fatigue, ASTM STP 942, H.D. Solomon, G.R. Halford, L.R. Kaisand, and B.N. Leis, eds., ASTM, Philadelphia, PA, 1988, pp. 638–56.

    Google Scholar 

  22. R. Raj:Acta Metall., 1978, vol. 26, pp. 995–1006.

    Article  CAS  Google Scholar 

  23. B.K. Min and R. Raj:Acta Metall., 1978, vol. 26, pp. 1007–22.

    Article  CAS  Google Scholar 

  24. A.S. Argon, I.W. Chen, and C.W. Lau:Proc. Symp. TMS-AIME Mechanical Metallurgy Committee, TMS-AIME Fall Meeting, Sept. 18–19, 1979, R.M. Pelloux and N. Stoloff, eds., TMS-AIME, Warrendale, PA, 1979, pp. 46–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.U. Thermal-Mechanical fatigue of Ti-48Al-2V alloy and its composite. Metall Mater Trans A 25, 2207–2212 (1994). https://doi.org/10.1007/BF02652321

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652321

Keywords

Navigation