Skip to main content
Log in

A new model for the thermal oxidation kinetics of silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A model is presented which reasons that the thermal oxidation of silicon is surface reaction limited, and that the reaction rate is controlled by the viscous flow of newly forming oxide to accommodate the volume expansion that occurs when silicon oxidizes. The SiO2 must form at silicon lattice sites and therefore epitaxially. This thermody-namically unstable epitaxial structure reconfigures and this reconfiguration results in an increase of the average viscosity of the oxide. The continual increase of average oxide viscosity accounts for the continual decrease in oxidation rate with time. A mathemat-ical analysis based on this model is used to derive the simple power law x = atb relating oxide thickness, x, to oxidation time, t which has been shown previously to model phe-nomenologically all of the extant dry oxidation data.1 The physical significances of the coefficient a and exponent b are obtained by the interpretation of the x vs t data in the literature in terms of this mathematical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Reisman, E. H. Nicollian, C. K. Williams, and C. J. Merz,J. Electron. Mater. 16, 45 (1987).

    CAS  Google Scholar 

  2. M. M. Atalla, in “Properties of Elemental and Compound Semiconductors,” Vol. 5, H. Gatos, Ed., Wiley-Interscience, New York, N.Y., 1960, pp. 163–181.

    Google Scholar 

  3. J. R. Ligenza and W. G. Spitzer,J. Phys. Chem. Solids 14, 131 (1960).

    Article  CAS  Google Scholar 

  4. W. G. Spitzer and J. R. Ligenza,Phys. Chem. Solids 17, 196 (1961).

    Article  CAS  Google Scholar 

  5. P. J. Jorgensen,J. Chem. Phys. 37, 874 (1962).

    Article  CAS  Google Scholar 

  6. W. A. Pliskin and R. P. Gnall,J. Electrochem. Soc. 111, 872 (1964).

    Article  CAS  Google Scholar 

  7. J. R. Ligenza,J. Electrochem. Soc. 109, 73 (1962).

    Article  CAS  Google Scholar 

  8. T. Y. Tan and U. Gosele,Appl. Phys. Lett. 39, 86 (1981).

    Article  CAS  Google Scholar 

  9. W. A. Tiller,J. Electrochem. Soc. 127, 619 (1980), and Ibid,127, 625 (1980).

    Article  CAS  Google Scholar 

  10. E. A. Irene,J. Appl. Phys. 54, 5416 (1983).

    Article  CAS  Google Scholar 

  11. A. Ourmazd, D. W. Taylor, J. A. Rentscher, and J. Berk,Phys. Rev. Lett. 59, 213 (1987).

    Article  CAS  Google Scholar 

  12. F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Maserjian, and A. Madhukar,J. Vac. Sci. and Technol. 16, 1443 (1979).

    Article  CAS  Google Scholar 

  13. F. J. Grunthaner, P. J. Grunthaner, R. P. Vasquez, B. F. Lewis, J. Mserjian, and A. Madhukar,Phys. Rev. Lett. 43, 1683 (1979).

    Article  CAS  Google Scholar 

  14. G. W. Scherer, “Relaxation in Glasses and Composites,” Wiley- Interscience, New York, NY, 1986, Chapter 1.

  15. S. Brawer, “Relaxation in Viscous Liquids and Glasses,” The American Ceramic Society, Inc., Columbus, Ohio, 1985, Chapter 11.

  16. E. Rosencher, A. Straboni, S. Rigo, and G. Amsel,Appl. Phys. Lett. 34, 254 (1979).

    Article  CAS  Google Scholar 

  17. F. Rochet, B. Agius, and S. Rigo, J. Electrochem. Soc.131, 914 (1984).

    Google Scholar 

  18. H. Z. Massoud, Ph.D. Thesis, Tech. Report #G502-l Stan- ford University (1983).

  19. H. Z. Massoud, J. D. Plummer, and E. A. Irene,J. Electro- chem. Soc. 132, 1745 (1985).

    Article  CAS  Google Scholar 

  20. B. E. Deal and A. S. Grove,J. Appl. Phys. 36, 3770 (1965).

    Article  CAS  Google Scholar 

  21. A. C. Adams, T. E. Smith, and C. C. Chang,J. Electrochem. Soc. 127, 1787 (1980).

    Article  CAS  Google Scholar 

  22. A. G. Revesz, B. J. Mrstick, H. L. Hughes, and D. McCarthy,J. Electrochem. Soc. 133, 586 (1986).

    Article  CAS  Google Scholar 

  23. Chien-Jin Han and C. Robert Helms,J. Electrochem. Soc. 134, 1297 (1987).

    Article  CAS  Google Scholar 

  24. A. Fargeix and G. Ghibaudo,J. Appl. Phys. 54, 7153 (1983).

    Article  CAS  Google Scholar 

  25. R. H. Doremus,Thin Solid Films. 122, 191 (1984).

    Article  CAS  Google Scholar 

  26. A. Reisman, MCNC Technical Report, TR 86-05, or Proc. Fifth Int. Symp. on Silicon, Spring Mtg., Boston, MA, May 4-9, 1986—The Electrochemcial Society, Pennington, NJ 08534- 2896, p. 364.

  27. A. Reisman and M. Berkenblit,J. Electrochem. Soc. 112, 812 (1965).

    Article  CAS  Google Scholar 

  28. A. Reisman, M. Berkenblit, S. A. Chan, F. B. Kaufman, and D. C. Green,J. Electrochem. Soc. 126, 1406 (1979).

    Article  CAS  Google Scholar 

  29. G. Charitat and A. Martinez,J. Appl. Phys. 55, 909 (1984).

    Article  CAS  Google Scholar 

  30. R. Francise and P. S. Dobson,J. Appl. Phys. 50, 280 (1974).

    Article  Google Scholar 

  31. See for example,Philos. Mag. Vol. 55, (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicollian, E.H., Reisman, A. A new model for the thermal oxidation kinetics of silicon. J. Electron. Mater. 17, 263–272 (1988). https://doi.org/10.1007/BF02652105

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652105

Key words

Navigation