Skip to main content
Log in

Self-Limitation of Native Oxides Explained

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon is one of many materials whose surface will oxidize in ambient conditions. However it is one of few materials whose native oxide will self-limit its growth in a matter of hours at a thickness of ∼2 nm. In this work, we show through the theory of repulsive van der Waals forces that this self-limitation is due, at least in part, to the interaction between the inherent material properties of a native silicon oxide film on silicon and oxidizing molecules. These molecules are not just hindered from even entering the system at all, but those that do enter the native oxide film are repelled away from the silicon – silicon oxide interface, preventing additional growth by oxidation. We also show how this repulsion is overcome by increasing ambient temperatures to subsequently increase the kinetic energy of the oxidizing molecules, calculated by the Boltzmann-Maxwell distribution, and allow oxidation to continue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raider SI, Flitsch R, Palmer MJ (1975) Oxide growth on etched silicon in air at room temperature. J Electrochem Soc 122:413–418

    Article  CAS  Google Scholar 

  2. Morita M, Ohmi T, Hasegawa E, et al. (1990) Growth of native oxide on a silicon surface. J Appl Phys 68:1272–1281. doi:10.1063/1.347181

    Article  CAS  Google Scholar 

  3. Kakiuchi H, Ohmi H, Harada M, et al. (2007) Formation of silicon dioxide layers at low temperatures (150–400 °C) by atmospheric pressure plasma oxidation of silicon. Sci Technol Adv Mater 8:137–141. doi:10.1016/j.stam.2006.12.006

  4. Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770. doi:10.1063/1.1713945

    Article  CAS  Google Scholar 

  5. Ligenza JR (1965) Silicon oxidation in an oxygen plasma excited by microwaves. J Appl Phys 36:2703. doi:10.1063/1.1714565

    Article  CAS  Google Scholar 

  6. Pliskin WA, Lehman HS (1965) Structural evaluation of silicon oxide films. J Electrochem Soc 112:1013–1019

    Article  CAS  Google Scholar 

  7. Deal BE (1963) The oxidation of silicon in dry oxygen, wet oxygen, and steam. J Electrochem Soc 110:527– 533

    Article  CAS  Google Scholar 

  8. Kazor A, Boyd IW (1993) Ozone-induced rapid low temperature oxidation of silicon. Appl Phys Lett 63:2517–2519. doi:10.1063/1.110467

    Article  CAS  Google Scholar 

  9. Cui Z, Madsen JM, Takoudis CG (2000) Rapid thermal oxidation of silicon in ozone. J Appl Phys 87:8181–8186. doi:10.1063/1.373515

    Article  CAS  Google Scholar 

  10. Xu J, Choyke WJ, Yates JT (1997) Enhanced silicon oxide film growth on Si (100) using electron impact. J Appl Phys 82:6289. doi:10.1063/1.366516

    Article  CAS  Google Scholar 

  11. Cabrera N, Mott NF (1949) Theory of the oxidation of metals. Reports Prog Phys 12:163–184

    Article  CAS  Google Scholar 

  12. Engel T (1993) The interaction of molecular and atomic oxygen with Si(100) and Si(111). Surf Sci Rep 18:91–144

    Article  CAS  Google Scholar 

  13. Hamaker HC (1937) The London-van der Waals attraction between spherical particles. Phys IV 10

  14. Lifshitz EM (1955) The theory of molecular attractive forces between solids. J Exp Theor Phys 29:94–110

    Google Scholar 

  15. Parsegian VA, Ninham BW (1970) Temperature dependent van der Waals forces. Biophys J 10:664–674

    Article  CAS  Google Scholar 

  16. Hough D, White L (1980) The calculation of hamaker constants from liftshitz theory with applications to wetting phenomena. Adv Colloid Interface Sci 14:3–41

    Article  CAS  Google Scholar 

  17. Tabor D, Winterton RHS (1969) The direct measurement of normal and retarded van der Waals forces. Proc R Soc A Math Phys Eng Sci 312:435–450. doi:10.1098/rspa.1969.0169

    Article  CAS  Google Scholar 

  18. Bohling CD, Sigmund WM (2014) Predicting and measuring repulsive van der Waals forces for a Teflon AFTM - solvent-- α-alumina system. Colloids Surfaces A Physicochem Eng Asp 462:137–146. doi:10.1016/j.colsurfa.2014.08.018

    Article  CAS  Google Scholar 

  19. Woan KV, Sigmund WM (2011) Force interactions of porous silica glass microspheres against mirror-polished stainless steel in nonaqueous solvents. Langmuir 27:5377–85. doi:10.1021/la200157v

    Article  CAS  Google Scholar 

  20. Lee S, Sigmund WM (2002) AFM study of repulsive van der Waals Forces between Teflon AFTM thin films and silica or alumina. Colloids Surfaces A Physicochem Eng Asp 204:43–50

    Article  CAS  Google Scholar 

  21. Lee S, Sigmund W (2001) Repulsive van der Waals forces for silica and alumina. J Colloid Interface Sci 243:365–369. doi:10.1006/jcis.2001.7901

    Article  CAS  Google Scholar 

  22. Feiler A, Bergström L, Rutland M (2008) Superlubricity using repulsive van der Waals forces. Langmuir 24:2274–6. doi:10.1021/la7036907

    Article  CAS  Google Scholar 

  23. Munday JN, Capasso F, Parsegian VA (2009) Measured long-trange repulsive Casimir-Lifshitz forces. Nature 457:170–3. doi:10.1038/nature07610

    Article  CAS  Google Scholar 

  24. Milling A, Mulvaney P, Larson I (1996) Direct measurement of repulsive van der Waals interactions using an atomic force microscope. J Colloid Interface Sci 180:460–465

    Article  CAS  Google Scholar 

  25. Bowen WR, Hilal N, Lovitt RW, Wright CJ (1999) An atomic force microscopy study of the adhesion of a silica sphere to a silica surface - effects of surface cleaning. Colloids Surfaces A Physicochem Eng Asp 157:117–125. doi:10.1016/S0927-7757(99)00045-X

    Article  CAS  Google Scholar 

  26. Meurk A, Luckham PF, Bergström L (1997) Direct measurement of repulsive and attractive van der Waals forces between inorganic materials. Langmuir 13:3896–3899

    Article  CAS  Google Scholar 

  27. Matope S, Rabinovich YI, Van der Merwe AF (2012) Van der Waals interactions between silica spheres and metallic thin films created by e-beam evaporation. Colloids Surfaces A Physicochem Eng Asp 411:87–93. doi:10.1016/j.colsurfa.2012.07.006

    Article  CAS  Google Scholar 

  28. Bohling C, Sigmund W (2015) Repulsive van der Waals forces self-limit native oxide growth. Langmuir. (In Press)

  29. Israelachvili JN (1992) Intermolecular and surface forces, 2nd Ed. Academic, San Diego

    Google Scholar 

  30. Kalnitsky A, Tay SP, Ellul JP, et al. (1990) Measurements and modeling of thin silicon dioxide films on silicon. J Electrochem Soc 137:234–238

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Sigmund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohling, C., Sigmund, W. Self-Limitation of Native Oxides Explained. Silicon 8, 339–343 (2016). https://doi.org/10.1007/s12633-015-9366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9366-8

Keywords

Navigation