Skip to main content
Log in

Heterogeneous nucleation of σ′ on dislocations in a dilute aluminum-lithium alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nucleation of S on dislocations with small undercooling in binary aluminum-lithium alloys has been examined. The study of related microstructures was performed using transmission electron microscopy (TEM), which demonstrates that σ′ preferentially nucleates on dislocations with a strong edge character and locates at the side where the stress field is compressive without destroying the dislocation core structure. This qualitatively justifies the theoretical prediction by Larché on coherent heterogeneous nucleation on edge dislocations. Following the evaluation of the volume free energy change for the binary system by the ideal solution model and the mean-field model by Khachaturyan, the nucleation barrier and the nucleation rate were calculated and compared with experimentally determined data based on Larché's model. Specifically, the back-calculated interfacial energies from the experimentally determined nucleation rate data are in good agreement with the interfacial energy temperature dependence predicted by the related interfacial energy model. The effects of misfit strain, volume diffusion, interfacial energy, and nucleation sites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.F. Baumann and D.B. Williams:Metall. Trans. A, 1985, vol. 16A, pp. 1203–11.

    CAS  Google Scholar 

  2. W.A. Cassada, G.J. Shiflet, and W.A. Jesser:Acta Metall., 1992, vol. 40, pp. 2101–11.

    Article  CAS  Google Scholar 

  3. J.W. Cahn:Acta Metall., 1957, vol. 5, pp. 169–72.

    Article  CAS  Google Scholar 

  4. B. Ya. Lyubov and V.A. Solovyev:Phys. Met. Metall., 1965, vol. 19, p. 30.

    Google Scholar 

  5. C.C. Dollins:Acta Metall., 1970, vol. 18, pp. 1209–15.

    Article  CAS  Google Scholar 

  6. F.C. Lärché: inDislocations in Solids, F.R.N. Nabarro, ed., North- Holland Publishing Co., Amsterdam, 1978, vol. 4, pp. 135–52.

    Google Scholar 

  7. F.C. Lärché:Solid State Phenomena, 1994, vols. 35–36, pp. 173–82.

    Google Scholar 

  8. Z.M. Wang and G.J. Shiflet: University of Virginia, Charlottesville, VA, unpublished work, 1995.

  9. P. Hirsch, A. Howie, R.B. Nicholson, D. Pashley and M.J. Whelan:Eledron Microscopy and Strength of Crystals, Robert E. Krieger Publishing Company, New York, NY, 1977, pp. 160–63.

    Google Scholar 

  10. J.D. Eshelby:Progr. Solid Mechanics, 1961, vol. 11, pp. 89–140.

    Google Scholar 

  11. K.C. Russell:Phase Transformations, ASM, Metals Park, OH, 1970, pp. 219–68.

    Google Scholar 

  12. H.I. Aaronson and J.K. Lee:Lectures on the Theory of Phase Transformation, TMS-AIME, Warrendale, PA, 1975, pp. 83–115.

    Google Scholar 

  13. Z.M. Wang and G.J. Shiflet:Proc. 4th Int. Conf. on Aluminum Alloys, 1994, vol. 2, pp. 145–52.

    CAS  Google Scholar 

  14. J.P. Hirth and J. Lothe:Theory of Dislocations, McGraw-Hill Book Company, 1968, p. 637.

  15. C.H.P. Lupis:Chemical Thermodynamics of Materials, Elsevier Science Publishing Co., Inc., New York, NY, 1983, pp. 151–67.

    Google Scholar 

  16. A.G. Khachaturyan, T.F. Lindsey, and J.W. Morris, Jr.:Metall. Trans. A, 1988, vol. 19A, pp. 249–58.

    CAS  Google Scholar 

  17. D.B. Williams:Microstructural Characteristics of AL-Li Alloys, Conf. Proc. of Al-Li, 1981, vol. I, pp. 90–100.

    Google Scholar 

  18. D.B. Williams and J.W. Edington:Met. Sci., 1975, vol. 9, pp. 529–532.

    Article  Google Scholar 

  19. S.F. Baumann: Ph. D. Thesis, Lehigh University, Bethlehem, PA, 1983, p. 155.

  20. J.J. Hoyt and S. Spooner:Acta Metall. Mater., 1991, vol. 39, pp. 689–93.

    Article  CAS  Google Scholar 

  21. K. Mahalingam, B.P. Gu, G.L. Liedl, and T.H. Sanders:Acta Metall., 1987, vol. 35, pp. 483–98.

    Article  CAS  Google Scholar 

  22. S.F. Baumann and D.B. Williams:Scripta Metall., 1984, vol. 18, pp. 611–16.

    Article  CAS  Google Scholar 

  23. B. Noble and G.E. Thompson:Met. Sci. J., 1971, vol. 5, pp. 114–20.

    Article  CAS  Google Scholar 

  24. M. Tamura, T. Mori, and T. Nakamura:J. Jpn. Inst. Met., 1970, vol. 34, pp. 919–25.

    CAS  Google Scholar 

  25. G. Schmitz and P. Haasen:Acta. Metall. Mater., 1992, vol. 40, pp. 2209–17.

    Article  CAS  Google Scholar 

  26. J.W. Martin and R.D. Doherty:Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, United Kingdom, 1976, p. 175.

    Google Scholar 

  27. J.W. Cahn and J.E. Hilliard:J. Chem. Phys., 1958, vol. 28, pp. 258–67.

    Article  CAS  Google Scholar 

  28. Y.W. Lee and H.I. Aaronson:Acta Metall., 1980, vol. 28, pp. 539–48.

    Article  Google Scholar 

  29. J.W. Cahn:Acta Metall., 1960, vol. 8, pp. 554–62.

    Article  CAS  Google Scholar 

  30. J.W. Cahn and J.E. Hilliard:J. Chem. Phys., 1959, vol. 31, p. 539.

    Article  Google Scholar 

  31. Z.M. Wang and G.J. Shiflet:Phys. Status Solidi A, 1995, vol. 149, p. 105–122.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student

This article is based on a presentation made during TMS/ASM Materials Week in the symposium entitled “Atomistic Mechanisms of Nucleation and Growth in Solids,” organized in honor of H.I. Aaronson’s 70th Anniversary and given October 3–5. 1994 in Rosemont, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z.M., Shiflet, G.J. Heterogeneous nucleation of σ′ on dislocations in a dilute aluminum-lithium alloy. Metall Mater Trans A 27, 1599–1609 (1996). https://doi.org/10.1007/BF02649818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649818

Keywords

Navigation