Skip to main content
Log in

Formation of bainite in ferrous and nonferrous alloys through sympathetic nucleation and ledgewise growth mechanism

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The subunits constituting a bainitic sheaf in an Fe-C-Cr-Si alloy were discovered by scanning tunneling microscopy (STM) to consist of sub-subunits, and sub-subunits were also composed of sub-sub-subunits. Detailed investigation shows that a bainitic relief is composed of many smaller reliefs, which correspond to a different structure of bainite,i.e., subunits, sub-subunits, and sub-sub-subunits. It is determined by STM that the surface relief arising from the formation of bainite in an Fe-C-Cr alloy istent shaped rather than an invariant plane strain (IPS) type of surface relief. Careful observation shows that the relief obtained from a sub-sub-subunit is also tent shaped. It is discovered by STM that an α1 plate,i.e., bainite formed in Cu-Zn-Al alloys, is composed of subunits. This is also demonstrated by transmission electron microscopy (TEM). The preceding results indicate that bainitic plates in Cu-Zn-Al alloys and bainitic subunits in steels are not the smallest structural units. Based on the preceding results on the ultrafine structure and the nature of surface relief accompanying bainite, it is proposed that the bainitic structure forms through a sympathetic nucleation and ledgewise growth (SNLG) mechanism. This article shows that the SNLG mechanism can be successfully applied to interpret the complicated structure of bainite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Mehl:Hardenability of Alloy Steels, ASM, Cleveland, OH, 1939, p. 1.

    Google Scholar 

  2. H.I. Aaronson and C. Wells:Trans. AIME, 1956, vol. 206, p. 1216.

    Google Scholar 

  3. J.M. Oblak and R.F. Hehemann:Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, p. 15.

    Google Scholar 

  4. F.B. Pickering:Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, p. 109.

    Google Scholar 

  5. H.K.D.H. Bhadeshia and J.W. Christian:Metall. Trans. A, 1990, vol. 21A, pp. 767–97.

    CAS  Google Scholar 

  6. R.F. Hehemann:Phase Transformation, ASM, Metals Park, OH, 1970, p. 397.

    Google Scholar 

  7. R. LeHouillier, G. Begin, and A. Dube:Metall. Trans., 1971, vol. 2, pp. 2645–53.

    Article  CAS  Google Scholar 

  8. B.P.J. Sandvik:Metall. Trans. A, 1982, vol. 13A, pp. 777–87.

    Google Scholar 

  9. T.K. and S.A. Cottrell:J. Iron Steel Inst., 1952, vol. 172, p. 307.

    Google Scholar 

  10. H.I. Aaronson:Scripta Metall., 1980, vol. 14, p. 825.

    Article  CAS  Google Scholar 

  11. H.J. Lee and H.I. Aaronson:Acta Metall., 1988, vol. 36, p. 787.

    Article  CAS  Google Scholar 

  12. U. Dahmen:Scripta Metall., 1987, vol. 21, p. 1027.

    Google Scholar 

  13. H.I. Aaronson, C. Laird, K.R. Kinsman:Phase Transformations, ASM, Metals Park, OH, 1970, pp. 313–396.

    Google Scholar 

  14. H.K.D.H. Bhadeshia:Bainite in Steels, Institute of Materials, London, 1992, p. 28.

    Google Scholar 

  15. H.S. Fang, J. Wang, Y. Zheng, and Z.G. Yang:STM in Materials Science, Science Press, Beijing, 1993.

    Google Scholar 

  16. J. Wang, H.S. Fang, Z.G. Yang, and Y. Zheng:Iron Steel Inst. Jpn. Int., 1995, vol. 35, p. 992.

    CAS  Google Scholar 

  17. J. Wang, H.S. Fang, Z.G. Yang, Y. Zheng, J. Yan, and H. Yu:Mater. Char., 1994, vol. 33, p. 169.

    Article  CAS  Google Scholar 

  18. J. Wang, Z.G. Yang, H. Fang, and D. Hu:Phys. Test. Chem. Anal., 1994, vol. 30 (6), p. 12.

    Google Scholar 

  19. H.S. Fang, J. Wang, Z.G. Yang, Y. Zheng, X. Deng, J. Yan, H. Yu, G. Hong, and Z. Li:Progr. Nature Sci., 1993, vol. 3, p. 525.

    Google Scholar 

  20. J. Yan, H. Fang, and J. Wang:Nat. Symp. on STM/STS, Institute of Chemistry, Chinese Academy of Science, Beijing, China, 1993, p. 36.

    Google Scholar 

  21. J. Wang, H.S. Fang, and Y. Zheng:Ord. Mat. Sci. Eng., 1993, vol. 16 (4), p. 3.

    CAS  Google Scholar 

  22. J. Yan, J. Wang, and H.S. Fang:Int. Conf. on STM, Chinese Science and Technology Association, Beijing, China, 1993, p. 167.

    Google Scholar 

  23. J. Yan, H. Yu, Z. Li, Z. Ge, H.S. Fang, and J. Wang: Z.G. Yang:JVST, 1994, vol. B12, p. 1793.

    Article  Google Scholar 

  24. Q. Long, Y. Wen, Z. Zhu:Trans. Met. Heat Treatment, 1994, vol. 15 (3), p. 19.

    CAS  Google Scholar 

  25. H. Su and Z. Yan:Mater. Lett., 1992, vol. 13, p. 102.

    Article  CAS  Google Scholar 

  26. J.W. Christian:Decomposition of Austenite by Diffusional Processes, Interscience Publishers, New York, NY, 1962, p. 371.

    Google Scholar 

  27. H.S. Fang, J.J. Wang, Z.G. Yang, Y.K. Zheng, D.X. Hu: HSLA Steels '95, Ed. G. Liu, S. Harry, H. Zhang, C. Li, China Science & Technology Press, Beijing, 1995, pp 530–535.

    Google Scholar 

  28. H.S. Fang, C. Li, and J. Wang:Acta Metall. Sinica, 1993, vol. 29, p. A383.

    CAS  Google Scholar 

  29. C. Li, H.S. Fang, J. Wang, and Y. Zheng:Mater. Lett., 1995, vol. 22, p. 233.

    Article  CAS  Google Scholar 

  30. K. Chattopachyay and H.I. Aaronson:Acta Metall., 1986, vol. 34, p. 695.

    Article  Google Scholar 

  31. N. Pavishanker, H.I. Aaronson, and K. Chattopadhyay:Metall. Mater. Trans. A, 1994, vol. 29A, pp. 2631–37.

    Article  Google Scholar 

  32. R.E. Smallman:Dislocations in Crystals, Modern Physical Metallurgy, 4th ed., Butterworth and Co., London, 1985, p. 227.

    Google Scholar 

  33. C. Li, H.S. Fang, and J. Wang:Sci. China, 1994, vol. 24, p. 892.

    Google Scholar 

  34. D. Yu, Y. Zhu, D. Chen, X. Tang, and H. Zheng:Acta Metall. Sinica, 1994, vol. 30, p. A385.

    CAS  Google Scholar 

  35. H. Fang and J. Wang:Acta Metall. Sinica, 1994, vol. 30, p. 481.

    Google Scholar 

  36. H. Fang and J. Wang:Acta Metall. Sinica, 1994, vol. 30, p. 491.

    Google Scholar 

  37. H.I. Aaronson:Symp. on Phase Transformations '93, Beijing, China, Nov. 1993.

  38. T.Y. Hsu:Martensite and Martensitic Transformation, Science Press, Princeton, NJ, 1980.

    Google Scholar 

  39. M.G. Hall, H.I. Aaronson, and K.R. Kinsman:Surf. Sci., 1972, vol. 31, p. 257.

    Article  CAS  Google Scholar 

  40. J.M. Rigsbee and H.I. Aaronson:Acta Metall., 1979, vol. 27, p. 351.

    Article  CAS  Google Scholar 

  41. H.S. Fang and J. Wang:Ord. Mater. Sci. Eng., 1994, vol. 17 (2), p. 3.

    Google Scholar 

  42. G. Spanos, H.S. Fang, and H.I. Aaronson:Metall. Trans. A, 1990, vol. 21A, pp. 1381–90.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made during TMS/ASM Materials Week in the symposium entitled “Atomistic Mechanisms of Nucleation and Growth in Solids,” organized in honor of H.I. Aaronson’s 70th Anniversary and given October 3–5, 1994, in Rosemont, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, HS., Wang, JJ., Yang, ZG. et al. Formation of bainite in ferrous and nonferrous alloys through sympathetic nucleation and ledgewise growth mechanism. Metall Mater Trans A 27, 1535–1545 (1996). https://doi.org/10.1007/BF02649813

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649813

Keywords

Navigation