Skip to main content
Log in

Effect of uniaxial stress on coarsening of precipitate clusters

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of moderate applied uniaxial stresses (σapp/C 44 ≈ 10−3) on the coarsening behavior of misfitting coherent precipitates in binary alloys has been studied. Three-dimensional (3-D) computer simulations of the coarsening have been performed for elastically homogeneous systems with tetragonal misfit strain and elastically heterogeneous systems with dilatational misfit strain. Precipitate shapes are restricted to spheres. Results depend on the sign of the misfit strain, the sign of the applied field, and the character of the elastic heterogeneity: precipitates softer than the matrix phase with positive (negative) misfit strain align along the direction of the applied stress for compressive (tensile) fields and arrange in planes perpendicular to it for tensile (compressive) fields. Precipitates harder than the matrix behave in the opposite way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  2. C. Wagner:Z Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  3. A.J. Ardell:Acta Metall. Mater., 1972, vol. 20, pp. 61–71.

    Article  Google Scholar 

  4. A.D. Brailsford and P. Wynblatt:Acta Metall. Mater., 1979, vol. 27, pp. 489–97.

    Article  CAS  Google Scholar 

  5. C.K.L. Davies, P. Nash, and R.N. Stevens:Acta Metall. Mater., 1980, vol. 28, pp. 179–89.

    Article  CAS  Google Scholar 

  6. J.A. Marqusee and J. Ross:J. Chem. Phys., 1984, vol. 80, pp. 536–43.

    Article  CAS  Google Scholar 

  7. Y. Enomoto, M. Tokuyama, and K. Kawasaki:Acta Metall. Mater., 1986, vol. 34, pp. 2119–28.

    Article  CAS  Google Scholar 

  8. D.M. Barnett, J.K. Lee, H.I. Aaronson, and K.C. Russell:Scripta Metall., 1974, vol. 8, pp. 1447–50.

    Article  Google Scholar 

  9. M. Doi, T. Miyazaki, and T. Wakatsuki:Mater. Sci. Eng., 1984, vol. 67, pp. 247–53.

    Article  CAS  Google Scholar 

  10. W.C. Johnson:Acta Metall. Mater., 1984, vol. 32, pp. 465–75.

    Article  CAS  Google Scholar 

  11. A.J. Ardell, R.B. Nicholson, and J.D. Eshelby:Acta Metall. Mater., 1966, vol. 14, pp. 1295–1309.

    Article  CAS  Google Scholar 

  12. K. Kawasaki and Y. Enomoto:Physica A, 1988, vol. 150, pp. 463- 98.

    Article  Google Scholar 

  13. W.C. Johnson, P.W. Voorhees, and D. Zupon:Metall. Trans. A, 1989, vol. 20A,pp. 1175–89.

    CAS  Google Scholar 

  14. W.C. Johnson, T.A. Abinandanan, and P.W. Voorhees:Acta Metall. Mater., 1990, vol. 38, pp. 1349–67.

    Article  Google Scholar 

  15. P. Leo, W.W. Mullins, R.F. Sekerka, and J. Vifials:Acta Metall. Mater., 1990, vol. 38, pp. 1573–80.

    Article  CAS  Google Scholar 

  16. H. Nishimori and A. Onuki:Phys. Rev. B, 1990, vol. 42, pp. 980–83.

    Article  Google Scholar 

  17. A. Onuki and H. Nishimori:Phys. Rev. B, 1991, vol. 43, pp. 13649–13652.

    Article  Google Scholar 

  18. Y. Wang, L.-Q. Chen, and A.G. Khachaturyan:Phys. Rev. B, 1992, vol. 46, pp. 11194–11197.

    Article  Google Scholar 

  19. T.A. Abinandanan and W.C. Johnson:Acta Metall Mater., 1993, vol. 41, pp. 17–25.

    Article  Google Scholar 

  20. T.A. Abinandanan and W.C. Johnson:Acta Metall. Mater., 1993, vol. 41, pp. 27–39.

    Article  Google Scholar 

  21. J. Gayda and D.J. Srolovitz:Acta Metall. Mater., 1989, vol. 37, pp. 641–50.

    Article  CAS  Google Scholar 

  22. A. Pineau:Acta Metall. Mater., 1976, vol. 24, pp. 559–64.

    Article  CAS  Google Scholar 

  23. W.C. Johnson:Metall. Trans. A, 1987, vol. 18A, pp. 233–47.

    CAS  Google Scholar 

  24. W.C. Johnson: inMicromechanics and Inhomogeneity, G.J. Weng, M. Taya, and H. Abé, eds., Springer-Verlag, New York, NY, 1990, pp. 161–85.

    Google Scholar 

  25. G. Golub and J. Ortega:Scientific Computing, An Introduction with Parallel Computing, Academic Press, New York, NY, 1993.

    Google Scholar 

  26. Z.A. Moschovidis and T.A. Mura:J. Appl. Mech., 1975, vol. 42, pp. 847–52.

    Google Scholar 

  27. W. Hort and W.C. Johnson:Metall. Trans. A, 1994, vol. 25A, pp. 2695–2703.

    Article  CAS  Google Scholar 

  28. J.D. Eshelby:Proc. R. Soc. A, 1957, vol. 241, pp. 376–96.

    Article  Google Scholar 

  29. J.P. Hirth and J. Lothe:Theory of Dislocations, Krieger Publishing, Malabar, FL, 1992.

    Google Scholar 

  30. T.A. Abinandanan: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1991.

    Google Scholar 

  31. M.E. Thompson, C.S. Su, and P.W. Voorhees:Acta Metall. Mater, 1994, vol. 42, pp. 2107–22.

    Article  CAS  Google Scholar 

  32. Y. Wang, H. Wang, L.-Q. Chen, and A.G. Khachaturyan:J. Am. Ceram. Soc., 1993, vol. 76, pp. 3029–33.

    Article  CAS  Google Scholar 

  33. M. Watanabe, Z. Horita, T. Sano, and M. Nemoto:Acta Metall. Mater., 1994, vol. 42, pp. 3389–96.

    Article  CAS  Google Scholar 

  34. A.G. Khachaturyan and G.A. Shatalov:Sov. Phys., 1969, vol. 11, pp. 118–23.

    Google Scholar 

  35. J.A. Manriquez and L. Rabenberg:Scripta Metall., 1993, vol. 28, pp. 581–86.

    Article  CAS  Google Scholar 

  36. C. Carry and J.L. Strudel:Acta Metall. Mater., 1978, vol. 26, pp. 859- 70.

    Article  Google Scholar 

  37. R.A. MacKay and L.J. Ebert:Metall. Trans. A, 1985, vol. 16A, pp. 1969–82.

    CAS  Google Scholar 

  38. W.C. Johnson, M.B. Berkenpas, and D.E. Laughlin:Acta Metall. Mater., 1988, vol. 36, pp. 3149–62.

    Article  CAS  Google Scholar 

  39. S. Hess and W. Kohler:Formeln zur Tensorrechnung, Palm and Enke, Erlangen, Germany, 1980.

    Google Scholar 

  40. C.W.J. Beenakker and J. Ross:J. Chem. Phys., 1986, vol. 84, pp. 3857–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on representation made during TMS/ASM Materials Week in the symposium entitled “ldAtomistic Mechanisms of Nucleation and Growth in Solids,” organized in honor of H.I. Aaronson’s 70th Anniversary and given October 3–5, 1994, in Rosemont, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hort, W., Johnson, W.C. Effect of uniaxial stress on coarsening of precipitate clusters. Metall Mater Trans A 27, 1461–1476 (1996). https://doi.org/10.1007/BF02649807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649807

Keywords

Navigation