Skip to main content
Log in

Sputter-induced pits on {100} nickel surfaces

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nickel (Ni+) ions of 180 keV energy impinging on {100} faces of nickel single crystals produce sputtered surfaces. Examination of these surfaces exposed to fluences up to 8 X 1017 ions/cm2 and at temperatures between 25 °C and 750 °C reveals pits with facets parallel to the {111} and {100} crystallographic planes of the nickel. Subsurface voids also form and, when intersected by the sputtered surface, become small pits which grow with further sputtering. The pits exhibit facets that are direct extensions of facets present on the voids. The voids nucleate and grow during the initial stages of bombardment at temperatures above 600 °C but shrink beyond fluences of ~3.5 X 1017 ions/cm2. Voids are not observed after bombardment at temperatures less than 600 °C. Sputtering at these lower temperatures produces no pits unless the nickel is bombarded first at higher temperatures to produce the requisite voids. Measuring the rate at which the {100} surface recedes due to sputtering provides the sputtering yield. This yield, near 3.8 atoms per Ni+ ion, is independent of temperature from 25 °C to 750 °C. The growth rate of the pits,i.e., the rate at which oppositely inclined {111} faces separate, is also measured. At temperatures below 350 °C, the measured growth rate matches that based on sputtering of these inclined surfaces. The rate increases with increasing temperature above 350 °C, reaching nearly tenfold its low-temperature value by 750 °C. The mechanisms causing this accelerated growth with increasing temperature are discussed and related to the migration of the point defects produced by the bombardment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Taniguchi:Precision Eng., 1994, vol. 16, pp. 5–24.

    Article  Google Scholar 

  2. I. Miyamoto:Precision Eng., 1987, vol. 9, pp. 71–76.

    Article  Google Scholar 

  3. G. Carter, M.J. Nobes, I.V. Katardjiev, and J.L. Whitton:Defect Diff. Forum, 1988, vols. 57–58, pp. 97–126.

    Google Scholar 

  4. P. Sioshansi:Nucl. Inst. Meth. Phys. Res., 1987, vols. B19–B20, pp. 204–08.

    Google Scholar 

  5. B.A. Banks: inIon Bombardment Modification of Surfaces, O. Auciello and R. Kelly, eds., Elsevier Science Publishing, New York, NY, 1984, pp. 399–462.

    Google Scholar 

  6. H.A. Plain:Precision Engineering in the Generation of Aspheric Surfaces, Eastman Kodak Company, Rochester, NY, 1987.

    Google Scholar 

  7. M. Ahmed, K. Ruffing, and D.I. Potter:Mater. Sci. Eng., 1987, vol. 90, pp. 37–43.

    Article  CAS  Google Scholar 

  8. M. Ahmed and D.I. Potter:Acta Metall., 1985, vol. 33, pp. 2221–31 ; 1987, vol. 35, pp. 2341-54.

    Article  CAS  Google Scholar 

  9. J.K. Steele and D.I. Potter:J. Nucl. Mater., 1995, vol. 218, pp. 95–107.

    Article  CAS  Google Scholar 

  10. J.K. Steele, C.H. Koch, and D.I. Potter:Surf. Coat. Technol, 1992, vol. 51, pp. 399–404.

    Article  CAS  Google Scholar 

  11. J.K. Steele: Ph.D. Thesis, University of Connecticut, Storrs, CT, 1994.

    Google Scholar 

  12. O. Almen and G. Bruce:Nucl Inst. Meth., 1961, vol. 11, pp. 257–78.

    Article  CAS  Google Scholar 

  13. J.A. Hudson, D.J. Mazey, and R.S. Nelson:J. Nucl. Mater., 1971, vol. 41, pp. 241–56.

    Article  CAS  Google Scholar 

  14. R. Sigmund:Phys. Rev., 1969, vol. 184, pp. 383–416.

    Article  CAS  Google Scholar 

  15. R.S. Nelson:Phil. Mag., 1965, vol. 11, pp. 241–302.

    Google Scholar 

  16. G.E. Chapman, B.W. Farmery, and M.W. Thompson:Rad. Effects, 1972, vol. 13, pp. 121–29.

    Article  CAS  Google Scholar 

  17. K. Besocke, S. Berger, W.O. Hofer, and U. Littmark:Rad. Effects, 1982, vol. 66, pp. 35–41.

    Article  CAS  Google Scholar 

  18. R. Kelly:Surf. Sci., 1979, vol. 90, pp. 280–319.

    Article  CAS  Google Scholar 

  19. H. Wiedersich:Rad. Effects, 1972, vol. 12, pp. 111–25.

    Article  CAS  Google Scholar 

  20. A.D. Brailsford and R. Bullough:J. Nucl. Mater., 1972, vol. 44, pp. 121–35.

    Article  CAS  Google Scholar 

  21. L. Mansur: inKinetics of Nonhomogeneous Processes, G.R. Freeman, ed., John Wiley and Sons, Inc., New York, NY, 1987, pp. 377–463.

    Google Scholar 

  22. J.A. Sprague, J.E. Westmoreland, F.A. Smidt, Jr., and P.R. Malmberg:J. Nucl. Mater., 1974, vol. 54, pp. 286–98.

    Article  CAS  Google Scholar 

  23. N.H. Packan, K. Farrell, and J.O. Steigler:J. Nucl. Mater., 1978, vol. 78, pp. 143–55.

    Article  CAS  Google Scholar 

  24. M. Kiritani and H. Takata:J. Nucl. Mater., 1977, vols. 69–70, pp. 277–309.

    Google Scholar 

  25. R.T. Tung and W.R. Graham:Surf. Sci., 1980, vol. 97, pp. 73–87.

    Article  CAS  Google Scholar 

  26. T. Michely, K.H. Besocke, and G. Comsa:Surf. Sci. Lett., 1990, vol. 230, pp. L135-L139.

    Article  CAS  Google Scholar 

  27. T. Michely and G. Comsa:Surf Sci., 1991, vol. 256, pp. 217–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Visiting Scientist, Metallurgy Department, University of Connecticut

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steele, J.K., Potter, D.I. Sputter-induced pits on {100} nickel surfaces. Metall Mater Trans A 27, 981–993 (1996). https://doi.org/10.1007/BF02649766

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649766

Keywords

Navigation