Skip to main content
Log in

Time-dependent, environmentally assisted crack growth in nicalon-fiber-reinforced SiC composites at elevated temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Subcritical crack growth measurements were conducted on ceramic matrix composites of β-SiC matrix reinforced with NICALON fibers (SiC/SiCf); fiber-matrix interphases were of carbon andboron nitride. Velocities of effective elastic cracks were determined as a function of effective applied stress intensity in pure Ar and in Ar plus 2000, 5000, and 20,000 ppm O2 atmospheres at 1100 °C. Over a wide range of applied stress intensities, theV-K eff diagrams revealed a stage II pattern in which the crack velocity depends only weakly on the applied stress intensity, followed by a stage III, or power-law, pattern at higher stress intensity. Oxygen increased the crack velocity in stage II and shifted the stage II to III transition to the left. A two-dimensional (2-D) micromechanics approach, developed to model the time dependence of observed crack-bridging events, rationalized the measured effective crack velocities, their time dependence, the stage II to III transition, and the effect of oxygen in terms of the load relaxation of crack-bridging fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wiederhorn and L. H. Bolz:J. Am. Ceram. Soc, 1970, vol. 53 (10), pp. 543–48.

    Article  CAS  Google Scholar 

  2. S. M. Weiderhom, S. W. Freiman, E. R. Fuller, and C. J. Simmons:J. Mater. Sci., 1982, vol. 17, pp. 3460–78.

    Article  Google Scholar 

  3. B.J. Pletka and S.M. Wiederhorn: inFracture Mechanics of Ceramics, R.C. Bradt, D.P.H. Hasselman, and F.F. Lange, eds., Plenum Press, New York, NY, 1978, vol. 4, pp. 745–59.

    Google Scholar 

  4. A. G. Evans:J. Mater. Sci., 1972, vol. 7, pp. 1137–46.

    Article  CAS  Google Scholar 

  5. A. G. Evans, L. R. Russell, and D. W. Richerson:Metall. Trans. A, 1975, vol. 6A, pp. 707–16.

    CAS  Google Scholar 

  6. A.G. Evans and F.F. Lange:J. Mater. Sci., 1975, vol. 10, pp. 1659–1664.

    Article  CAS  Google Scholar 

  7. K.D. McHenry and R.E. Tressler:J. Mater. Sci., 1977, vol. 12, pp. 1272–78.

    Article  CAS  Google Scholar 

  8. J.L. Henshall, D.J. Rowcliffe, and J.W. Edington:J. Am. Ceram. Soc., 1979, vol. 62(1–2), pp. 36–41.

    Article  CAS  Google Scholar 

  9. J.L. Henshall:Res Meek, 1980, vol. 1, pp. 229–48.

    CAS  Google Scholar 

  10. J.L. Henshall: inAdvances in Fracture Research (Fracture 81), D. Francois, ed., Pergamon Press, New York, NY, 1981, pp. 1541–49.

    Google Scholar 

  11. P.F. Becher and M.K. Ferber:Acta Metall., 1985, vol. 33 (7), pp. 1217–21.

    Article  Google Scholar 

  12. H. Hübner and W. Jillek:J. Mater. Sci., 1977, vol. 12, pp. 117–25.

    Article  Google Scholar 

  13. R.F. Cook, B.R. Lawn, and C.J. Fairbanks:J. Am. Ceram. Soc., 1985, vol. 68 (11), pp. 604–15.

    Article  CAS  Google Scholar 

  14. P.L. Swanson, C.J. Fairbanks, B.R. Lawn, Y.-W. Mai, and B.J. Hockey:J. Am. Ceram. Soc., 1987, vol. 70 (4), pp. 279–89.

    Article  CAS  Google Scholar 

  15. Y.-W. Mai and B.R. Lawn:J. Am. Ceram. Soc, 1987, vol. 70 (4), pp. 289–94.

    Article  CAS  Google Scholar 

  16. R. Knehans and R. Steinbrech:J. Mater. Sci. Lett, 1982, vol. 1, pp. 327–29.

    Article  CAS  Google Scholar 

  17. R. Steinbrech, R. Knehans, and W. Schaarwächter:J. Mater. Sci., 1983, vol. 18, pp. 265–70.

    Article  Google Scholar 

  18. T. Fett and D. Munz:J. Am. Ceram. Soc, 1992, vol. 75 (11), pp. 3133–36.

    Article  CAS  Google Scholar 

  19. R.E. Grimes, G.P. Kelkar, L. Guazzone, and K.W. White:J. Am. Ceram. Soc, 1990, vol. 73 (5), pp. 1399–1404.

    Article  CAS  Google Scholar 

  20. K. Jakus, S.M. Weiderhorn, and B.J. Hockey:J. Am. Ceram. Soc, 1986, vol. 69 (10), pp. 725–31.

    Article  Google Scholar 

  21. K. Jakus, J.E. Ritter, and R.H. Schwillinski:J. Am. Ceram. Soc, 1993, vol. 76 (1), pp. 33–38.

    Article  CAS  Google Scholar 

  22. P.F. Becher, T.N. Tiegs, J.C. Ogle, and W.H. Warwick: inFracture Mechanics of Ceramics, R.C. Bradt, A.G. Evans, D.P.H. Hasselman, and F.F. Lange, eds., Plenum Press, New York, NY, 1986 vol. 7, pp. 61–73.

    Google Scholar 

  23. M.G. Jenkins, A.S. Kobayashi, K.W. White, and R.C. Bradt:J. Am. Ceram. Soc, 1987, vol. 70 (6), pp. 393–95.

    Article  CAS  Google Scholar 

  24. K. Zeng, K. Breder, and D. Rowcliffe:J. Am. Ceram. Soc, 1993, vol. 76 (7), pp. 1673–80.

    Article  CAS  Google Scholar 

  25. K.W. White and L. Guazzone:J. Am. Ceram. Soc, 1991, vol. 74 (9), pp. 2280–85.

    Article  CAS  Google Scholar 

  26. K. Jakus and S.V. Nair:Compos. Sci. Technol, 1990, vol. 37, pp. 279–97.

    Article  Google Scholar 

  27. A.G. Evans:J. Am. Ceram. Soc, 1990, vol. 73, pp. 187–206.

    Article  CAS  Google Scholar 

  28. S.V. Nair, K. Jakus, and C. Ostertag:Ceram. Eng. Sci. Proc, 1988, vol. 9 (7–8), pp. 681–86.

    CAS  Google Scholar 

  29. S.V. Nair, K. Jakus, and T.J. Lardner:Mech. Mater, 1991, vol. 12 (3–4), pp. 229–44.

    Article  Google Scholar 

  30. C.H. Henager, Jr. and R.H. Jones:J. Am. Ceram. Soc, 1994, vol. 77, pp. 2381–94.

    Article  CAS  Google Scholar 

  31. M.D. Thouless:J. Am. Ceram. Soc., 1988, vol. 71 (6), pp. 408–13.

    Article  CAS  Google Scholar 

  32. S.V. Nair and T.-J. Gwo:J. Eng. Mater. Technol., 1993, vol. 115, pp. 273–80.

    CAS  Google Scholar 

  33. C.H. Henager, Jr. and R.H. Jones:Cer. Eng. Sci. Proc., 1992, vol. 13 (7–8), pp. 411–19.

    CAS  Google Scholar 

  34. C.H. Henager, Jr. and R.H. Jones:Cer. Eng. Sci. Proc., 1993, vol. 14 (7–8), pp. 408–15.

    CAS  Google Scholar 

  35. C.H. Henager, Jr. and R.H. Jones: inHigh Temperature Ceramic Matrix Composites: HT-CMC1, Pr. 6th R. Naslain, J. Lamon, and D. Doumeingts, eds., Woodhead Publishing Limited, Cambridge, United Kingdom, 1993, pp. 667–73.

    Google Scholar 

  36. C.H. Henager, Jr. and R.H. Jones:Proc. Engineering Foundation Conf. on Critical Issues in the Development of High-Temperature Structural Materials, N.S. Stoloff, D.J. Duquette, and A.F. Giamei, eds., TMS, Warrendale, PA, 1993, pp. 445–53.

    Google Scholar 

  37. C.H. Henager, Jr. and R.H. Jones: inCeramics Transactions, vol. 38,Advances in Ceramic-Matrix Composites, N.P. Bansal, ed., American Ceramics Society, Westerville, OH, 1993, pp. 317–28.

    Google Scholar 

  38. A. Bornhauser, K. Kromp, and R.F. Pabst:J. Mater. Sci., 1985, vol. 20, pp. 2586–96.

    Article  CAS  Google Scholar 

  39. A.G. Evans and R.M. McMeeking:Acta Metall., 1986, vol. 34, pp. 2435–41.

    Article  Google Scholar 

  40. D.L. Davidson:Metall. Trans. A, 1992, vol. 23A, pp. 865–79.

    CAS  Google Scholar 

  41. L. Filipuzzi and R. Naslain:J. Am. Ceram. Soc, 1994, vol. 77 (2), pp. 467–80.

    Article  CAS  Google Scholar 

  42. G. Simon and A.R. Bunsell:J. Mater. Sci., 1984, vol. 19, pp. 3658–70.

    Article  CAS  Google Scholar 

  43. J.A. DiCarlo:Compos. Sci. Technol., 1994, vol. 51, pp. 213–22.

    Article  CAS  Google Scholar 

  44. R.H. Jones, C.H. Henager, Jr., and C.F. Windisch, Jr.:Mater. Sci. Eng., 1995, vol. A198, pp. 103–12.

    CAS  Google Scholar 

  45. P.F. Tortorelli, S. Nijhawan, L. Riester, and R.A. Lowden:Ceram. Eng. Sci. Proc, 1993, vol. 14 (7–8), pp. 358–66.

    Article  CAS  Google Scholar 

  46. L. Filipuzzi, G. Camus, R. Naslain, and J. Thebault:J. Am. Ceram. Soc, 1994, vol. 77 (2), pp. 459–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RLO 1830

This article is based on a presentation made at the “High Temperature Fracture Mechanisms in Advanced Materials” symposium as a part of the 1994 Fall meeting of TMS, October 2-6, 1994, in Rosemont, Illinois, under the auspices of the ASM/SMD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henager, C.H., Jones, R.H., Windisch, C.F. et al. Time-dependent, environmentally assisted crack growth in nicalon-fiber-reinforced SiC composites at elevated temperatures. Metall Mater Trans A 27, 839–849 (1996). https://doi.org/10.1007/BF02649751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649751

Keywords

Navigation