Skip to main content
Log in

Columnar dendritic solidification in a metal- matrix composite

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Results are presented of a study on columnar dendritic solidification of the matrix of a fibrous metal-matrix composite, the fibers of which are aligned SiC fibers 140 m in diameter and the matrix of which is Al-4.5 wt pct Cu. Samples were produced by pressure infiltration of the metal-matrix into a preform of the fibers. The matrix was subsequently remelted and resolidified under controlled thermal gradient and growth rate. Dendrite growth begins in the center of the interstices left between the fibers. The dendrite tip temperature is not significantly influenced by the fibers, but the usual linear dependency of dendrite arm spacing ont 1/3 (wheret is time during solidification) is altered significantly in the narrower interstices at long solidification times. The underlying mechanism is dendrite arm coalescence which takes place at a sufficiently rapid rate in the composite that the microstructure gradually becomes nondendritic. The solid/liquid interface then is parallel to the matrix/fiber interface. A model is presented for the kinetics of dendrite arm coalescence and compared with experimental results. The amount of microsegregation that was found in the matrix within interstices is significantly less than that found in the usual cast alloy, especially at long solidification times (low cooling rates). The mechanism responsible for the observed reduction in microsegregation is solid-state diffusion which is enhanced in the composite by the fact that the fibers place an upper limit on the dendrite arm spacing, and hence on the required diffusion distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Coraie, Y. M. Chiang, D. R. Uhlmann, A. Mortensen, and J. Collins:Bull. Amer. Cer. Soc., 1986, vol. 65(2), pp. 293–304. bor]2.|A. Mortensen, M. N. Gungor, J. A. Cornie, and M. C. Flemings:J. of Metals, March 1986, pp. 30-35.

    Google Scholar 

  2. R. M. Sharp and A. Hellawell:J. of Crystal Growth, 1971, vol. 11, pp. 77–91.

    Article  CAS  Google Scholar 

  3. K. P. Young and D.H. Kirkwood:Metall. Trans. A, 1975, vol. 6A, pp. 197–205.

    Google Scholar 

  4. P. C. Dann, L. M. Hogan, and J. A. Eady:J. of the Australian Institute of Metals, 1974, vol. 19(2), pp. 140–47.

    CAS  Google Scholar 

  5. H. M. Tensi and H. Fuchs:Z. für Metallkunde, 1983, vol. 74, pp. 351–57.

    CAS  Google Scholar 

  6. M. Taha:Metal Science, 1979, vol. 13, pp. 9–12.

    Article  CAS  Google Scholar 

  7. M. Taha:J. of Materials Sc. Letters, 1984, vol. 3, pp. 194–98.

    Article  CAS  Google Scholar 

  8. D. G. McCartney and J. D. Hunt:Acta Metall., 1981, vol. 29, pp. 1851–63.

    Article  CAS  Google Scholar 

  9. Y. Miyata, T. Suzuki, and J. I. Uno:Metall. Trans. A, 1985, vol. 16A, pp. 1799–1806.

    CAS  Google Scholar 

  10. S. R. Nutt and F. E. Wawner:J. of Mat. Sc., 1985, vol. 20, pp. 1953–60.

    Article  CAS  Google Scholar 

  11. C. Buchle, C. Changarnier, and J. Calvet:Comptes Rendus de l' Académie des Sciences, 1952, vol. 235, pp. 1040–41.

    Google Scholar 

  12. F. Erdmann-Jestnitzer and W. Bernhardt:Metall., 1957, vol. 11(12), pp. 1032–37.

    Google Scholar 

  13. P.C. Dann, L. M. Hogan, and J.A. Eady:Metals Forum, 1979, vol. 2(4), pp. 212–19.

    Google Scholar 

  14. K. H. Chien and T. Z. Kattamis:Z. für Metallkunde, 1970, vol. 61, pp. 475–79.

    CAS  Google Scholar 

  15. M. C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974.

    Google Scholar 

  16. W. Kurz and D. J. Fisher:Fundamentals of Solidification, Trans. Tech. Publications, 1986.

  17. J. B. Murphy:Acta Metall., 1961, vol. 9, pp. 563–69.

    Article  CAS  Google Scholar 

  18. A. Mortensen: Ph.D. Thesis, Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA, April 1986.

    Google Scholar 

  19. H. D. Brody and M. C. Flemings:Trans. TMS-AIME, 1966, vol. 236, pp. 615–24.

    CAS  Google Scholar 

  20. M. C. Flemings, B. D. Poirier, R. V. Barone, and H. D. Brody:J. of the Iron and Steel Institute, 1970, vol. 208, pp. 371–81.

    CAS  Google Scholar 

  21. D. H. Kirkwood and D. J. Evans:The Solidification of Metals, Proc. Conf. London, 1967, ISI Publication 110, 1967, pp. 108–11.

    Google Scholar 

  22. D. H. Kirkwood:Materials Sc. and Eng., 1984, vol. 65, pp. 101–09.

    Article  CAS  Google Scholar 

  23. A. Roosz, Z. Gacsi, and E.G. Fuchs:Acta Metall., 1984, vol. 32, pp. 1745–54.

    Article  CAS  Google Scholar 

  24. D. G. McCartney and J. D. Hunt:Metall. Trans. A, 1984, vol. 15A, pp. 983–94.

    CAS  Google Scholar 

  25. M.P. Watson and J.D. Hunt:Metall. Trans. A, 1977, vol. 8A, pp. 1793–98.

    CAS  Google Scholar 

  26. M. Gunduz and J.D. Hunt:Acta Metall., 1985, vol. 33(9), pp. 1651–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, A., Cornie, J.A. & Flemings, M.C. Columnar dendritic solidification in a metal- matrix composite. Metall Trans A 19, 709–721 (1988). https://doi.org/10.1007/BF02649285

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649285

Keywords

Navigation