Skip to main content
Log in

Fatigue damage in a WC-Nickel cemented carbide composite

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A WC-15.6 wt pct Ni cemented carbide was designed to investigate the response of this type of composite to compressive cyclic loading. The monotonic stress-strain behavior of the material was investigated in compression. Specimens were mechanically conditioned at 20 Hz for 106 cycles using a zero-compression-zero sinusoidal program under stress control. Peak stress was varied in increments from zero to 1900 MPa, where failure was observed. Only modest changes in hardness, fracture toughness and the residual stress of the carbide were noted. On a local scale, however, significant alterations in binder microstructure and dislocation density and distribution were observed by transmission electron microscopy. As cyclic stress levels were raised, increasing numbers of grain-boundary-ledge dislocation sources became operative, leading to precipitate-free bands of intense slip. These bands broadened at the higher stress levels, saturating entire binder phase regions and finally giving way to a change in dislocation arrangements. It is concluded that fatigue damage in this type of composite accrues in the binder in a characteristic manner dictated by short binder-carbide interaction distances and local stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Dawihl:Stahl Eisen, 1941, vol. 40, p. 940.

    Google Scholar 

  2. I. Jhannson, G Persson, and R. Hiltscher:Powder Metall., 1970, vol. 13, p. 449.

    Google Scholar 

  3. C. M. Perrott:Annu. Rev. Mater. Sci., 1979, vol. 9, p. 23.

    Article  CAS  Google Scholar 

  4. J. A. Peck: unpublished research, Reed Rock Bit Company, Houston, TX, 1977.

  5. J. Gurland:Trans. ASM, 1958, vol. 50, p. 1063.

    Google Scholar 

  6. S. Ohman, E. Parnama, and S. Palmquist: Jernkonterets Ann., 1967, vol. 151, p. 126.

    CAS  Google Scholar 

  7. D. N. French:J. Am. Ceram. Soc., 1969, vol. 52, p. 267.

    Article  CAS  Google Scholar 

  8. D. N. French:J. Am. Ceram. Soc., 1969, vol. 52, p. 271.

    Article  CAS  Google Scholar 

  9. J. Bubois, C. Mai, and R. Riviere:Z. Metallkd., 1974, vol. 65, p. 130.

    Google Scholar 

  10. A. Hara, M. Megata, and S. Yazu:Powder Metall. Int., 1979, vol.2, p. 43.

    Google Scholar 

  11. B. O. Jaensson:Mater. Sci. Eng., 1971, vol. 8, p. 41.

    Article  CAS  Google Scholar 

  12. S. B. Luyckx:Acta Metall., 1968, vol. 16, p. 535.

    Article  Google Scholar 

  13. R. Arndt:Z. Metallkd., 1972, vol. 63, p. 274.

    CAS  Google Scholar 

  14. V. K. Sarin and T. Johanneson:Met. Sci., 1975, vol. 9, p. 472.

    Article  CAS  Google Scholar 

  15. H. Doi, Y. Fujiwara, and K. Miyake:Trans. Jpn. Inst. Met., 1968, vol. 9, p. 616.

    CAS  Google Scholar 

  16. H. Doi, Y. Fujiwara, and K. Miyake:Trans. TMSAIME, 1969, vol. 245, p. 1457.

    CAS  Google Scholar 

  17. J. Gurland:Trans. TMS-AIME, 1963, vol. 227, p. 1146.

    CAS  Google Scholar 

  18. D. N. French:Int. J. Powder Metall., 1969, vol. 5, p. 47.

    CAS  Google Scholar 

  19. M. Hansen, R. P. Elliot, and F. A. Shunk:Constitution of Binary Alloys, 2nd ed. with Supplements, McGraw-Hill Book Co., New York, 1969.

    Google Scholar 

  20. E. F. Drake: Ph.D. Thesis, Rice University, Houston, TX, 1980.

  21. W. B. Pearson:Handbook of Lattice Spacings and Structure of Metals, Pergamon Press, New York, 1958.

    Google Scholar 

  22. Phase Diagrams of Metallic Systems, N. V. Ageev, ed., annual supplement to “Metallography and Heat Treatment” of the Abstracts Journal “Metallurgy,” U.S.S.R. Acad. of Sciences All-Union Inst. of Sci. and Tech. Information, 1961.

  23. E. Lardner and M. B. McGregor:J. Inst. Met., 1951, vol. 80, p. 369.

    Google Scholar 

  24. Metals Handbook, vol. 1, ASM, Metals Park, Ohio, 1961.

  25. R. P. Felgar and J. D. Lubahn:Proc. ASTM, 1957, vol. 57, p. 770.

    CAS  Google Scholar 

  26. M. R. James and J. B. Cohen,Treatise on Materials Science and Technology, vol. 19A, Academic Press, 1980.

  27. L. M. Barker:Eng. Fract. Mech., 1977, vol. 9, p. 361.

    Article  Google Scholar 

  28. L. M. Barker and R. V. Guest: Report No. TR-28-20, Terra Tek Co., Salt Lake City, UT, to NSF, 1978.

  29. L. M. Barker and F. I. Baratta: Report on Contract No. DAAG 46-78-0040 for Army Matls. and Mechs. Res. Center, 1979.

  30. R. K. Viswanadham, J. D. Venables, and W. Precht: unpublished research, Martin Marietta Labs, Baltimore, MD, 1976.

  31. N. K. Sharma and W. S. Williams: unpublished research, University of Illinois, Champaign, IL, 1979.

  32. D. K. Brice: Report No. S-C-RR-710599, Sandia Labs, Albuquerque, NM, September 1971.

  33. L. E. Murr, R. J. Horylev, and W. C. Lin:Philos. Mag., 1971, vol.22, p. 515.

    Google Scholar 

  34. L. E. Murr:Appl. Phys. Lett., 1974, vol. 24, p. 533.

    Article  CAS  Google Scholar 

  35. L. E. Murr:Met. Trans. A, 1975, vol. 6A, p. 505.

    CAS  Google Scholar 

  36. R. K. Viswanadham:Met. Trans. A, 1979, vol. 10A, p. 1631.

    CAS  Google Scholar 

  37. W. J. Plumbridge and D. A. Ryder:Met. Rev., 1969, vol. 14, p. 119.

    Google Scholar 

  38. J. B. Clark and A. J. McEvily:Acta Metall., 1964, vol. 12, p. 1359.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. D. Krawitz, formerly with Rice University, Houston, TX.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drake, E.F., Krawitz, A.D. Fatigue damage in a WC-Nickel cemented carbide composite. Metall Trans A 12, 505–513 (1981). https://doi.org/10.1007/BF02648549

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648549

Keywords

Navigation