Skip to main content
Log in

Investigation on the Static Fatigue Mechanism and Effect of Specimen Thickness on the Static Fatigue Lifetime in WC–Co Cemented Carbides

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The static fatigue mechanism and effect of specimen thickness on static fatigue lifetime for four WC–Co cemented carbides were studied with different binder contents and carbide grain sizes. Static fatigue tests under three-point bend loading were conducted on different sized specimens. The fracture surfaces of rupture specimens were examined by scanning electron microscopy to investigate the static fatigue micromechanisms. Experimental results show that microcracks nucleate from defects or inhomogeneities and the connection of microcracks produces a main crack. The main crack propagates rapidly, resulting in the fracture of specimens. The extension of static fatigue lifetime with the increase of specimen thickness is due to the decrease of plastic zone size near the crack tip and relevant energy change during the crack growth. The effect of specimen thickness on static fatigue lifetime is much greater for cemented carbides with larger WC grain size or higher cobalt content, which is attributed to operative toughening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Upadhyaya, G.S., Materials science of cemented carbides—An overview, Mater. Des., 2001, vol. 22, no. 6, pp. 483–489.

    Article  CAS  Google Scholar 

  2. Exner, H.E., Physical and chemical nature of cemented carbides, Int. Met. Rev., 1979, vol. 24, no. 1, pp. 149–173.

    Article  CAS  Google Scholar 

  3. Sarin, V.K., Mari, D., and Llanes, L., Hardmetals, vol. 1 of Comprehensive Hard Materials, UK: Elsevier, 2014.

    Google Scholar 

  4. Voort, G.F.V., Metallography and Microstructure, vol. 9 of ASTM Handbook, USA: ASM International, 2004.

    Google Scholar 

  5. Raihanuzzaman, R.M., Xie, Z., Hong, S.J., and Ghomashchi, R., Powder refinement, consolidation and mechanical properties of cemented carbides—An overview, Powder Technol., 2014, vol. 261, pp. 1–13.

    Article  CAS  Google Scholar 

  6. Torres, Y., Tarrago, J.M., Coureaux, D., Tarrés, E., Roebuck, B., Chan, P., James, M., Liang, B., Tillman, M., Viswanadham, R.K., Mingard, K.P., Mestra, A., and Llanes, L., Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 179–188.

    Article  CAS  Google Scholar 

  7. Mikado, H., Ishihara, S., Oguma, N., Masuda, K., Kitagawa, S., and Kawamura, S., Effect of stress ratio on fatigue lifetime and crack growth behavior of WC–Co cemented carbide, Trans. Nonferrous Met. Soc., 2014, vol. 24, pp. 14–19.

    Article  Google Scholar 

  8. Tarragó, J.M., Jiménez-Piqué, E., Turón, M., Rivero, L., Schneider, L., and Llanes, L., Toughening and Fatigue Micromechanisms in Hardmetals: FESEM/FIB Tomography Characterization, in Proc. 18th Plansee Seminar, Reutte/Tyrol, Austria, 3–7 June, 2013, vol. 54, pp. 1–9.

    Google Scholar 

  9. Laperrière, L., and Reinhart, G., CIRP Encyclopedia of Production Engineering, Berlin Heidelberg: Springer, 2014

    Book  Google Scholar 

  10. Lueth, R.C., Fatigue of WC–Co cemented carbide, J. Eng. Mater., Technol., 1981, vol. 103, pp. 180–185.

    Google Scholar 

  11. Fry, P.R. and Garrett, G.G., Fatigue crack growth behavior of tungsten carbide–cobalt hardmetals, J. Mater. Sci., 1988, vol. 23, no. 7, pp. 2325–2338.

    Article  CAS  Google Scholar 

  12. Llanes, L., Torres, Y., and Anglada, M., On the fatigue crack growth behavior of WC-Co cemented carbides: kinetics description, microstructural effects and fatigue sensitivity, Acta Mater., 2002, vol. 50, no. 9, pp. 2381–2393.

    Article  CAS  Google Scholar 

  13. Torres, Y., Anglada, M., and Llanes, L., Fatigue mechanics of WC–Co cemented carbides, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, pp. 341–348.

    Article  CAS  Google Scholar 

  14. Torres, Y., Bermejo, R., Gotor, F.J., Chicardi, E., and Llanes, L., Analysis on the mechanical strength of WC–Co cemented carbides under uniaxial and biaxial bending, Mater. Des., 2014, vol. 55, pp. 851–856.

    Article  CAS  Google Scholar 

  15. Weibull, W., A statistical representation of fatigue failures in solids, Elander, 1949.

    Google Scholar 

  16. Klünsner, T., Wurster, S., Supancic, P., Ebner, R., Jenko, M., Glätzle, J., Püschel, A., and Pippan, R., Effect of specimen size on the tensile strength of WC–Co hard metal, Acta Mater., 2011, vol. 59, no. 10, pp. 4244–252.

    Article  Google Scholar 

  17. Tarragó, J.M., Coureaux, D., Torres, Y., Wu, F., Al-Dawery, I., and Llanes, L., Implementation of an effective time-saving two-stage methodology for microstructural characterization of cemented carbides, Int. J. Refract. Met. Hard Mater., 2016, vol. 55, pp. 80–86.

    Article  Google Scholar 

  18. Roebuck, B., and Almond, E.A., Deformation and fracture processes and the physical metallurgy of WC–Co hardmetals, Int. Met. Rev., 1988, vol. 33, no. 1, pp. 90–112.

    Article  CAS  Google Scholar 

  19. Dias, A.M.S., Miranda, J.S. and Godoy, G.C., Evaluation of fracture toughness by indentation testing in hardmetal tools, Material., 2009, vol. 14, no. 2, pp. 869–877.

    CAS  Google Scholar 

  20. Ravichandran, K.S., Fracture toughness of two phase WC–Co cermets, Acta Mater., 1994, vol. 42, no. 1, pp. 143–150.

    Article  CAS  Google Scholar 

  21. Sigl, L.S., and Fischmeister, H.F., On the fracture toughness of cemented carbides, Acta Metall., 1988, vol. 36, no. 4, pp. 887–897.

    Article  CAS  Google Scholar 

  22. Exner, H.E., Sigl, L., Fripan, M., and Pompe, O., Fractography of critical and subcritical cracks in hard materials, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, no. 4, pp. 329–334.

    Article  CAS  Google Scholar 

  23. Erling, G., Kursawe, S., Luyckx, S., and Sockel, H.G., Stable and unstable fracture surface features in WC–Co, J. Mater. Sci. Lett., 2000, vol. 19, no. 5, pp. 437–438.

    Article  CAS  Google Scholar 

  24. Suresh, S., Fatigue of materials, UK: Cambridge university press, 1998.

    Book  Google Scholar 

  25. Schleinkofer, U., Sockel, H.G., Görting, K., and Heinrich, W., Fatigue of hard metals and cermets, Mater. Sci. Eng. A, 1996, vol. 209, no. 1, pp. 313–317.

    Article  Google Scholar 

  26. Schleinkofer, U., Sockel, H.G., Schlund, P., Görting, K., and Heinrich, W., Behaviour of hard metals and cermets under cyclic mechanical loads, Mater. Sci. Eng. A, 1995, vol. 194, no. 1, pp. 1–8.

    Article  Google Scholar 

  27. Cha, S.I., Lee, K.H., Ryu, H.J., and Hong, S.H., Effect of size and location of spherical pores on transverse rupture strength of WC–Co cemented carbides, Mater. Sci. Eng. A, 2008, vol. 486, no. 1, pp. 404–408.

    Article  Google Scholar 

  28. Wilkinson, D.S. and Vitek, V., The propagation of cracks by cavitation: a general theory, Acta Metall., 1982, vol. 30, no. 9, pp. 1723–1732.

    Article  Google Scholar 

  29. Liu, W., Chen, Z.H., Wang, H.P., Zhang, Z.J., Yao, L. and Chen, D., Small Energy Multi-Impact and Static Fatigue Properties of Cemented Carbides, Powder Metall. Met. Ceram., 2016, vol. 55, no. 5, pp. 312–318.

    Article  CAS  Google Scholar 

  30. Teppernegg, T., Klünsner, T., Kremsner, C., Tritremmel, C., Czettl, C., Puchegger, S., Marsoner, S., Pippan, R., and Ebner, R., High temperature mechanical properties of WC–Co hard metals, Int. J. Refract. Met. Hard Mater., 2016, vol. 56, pp. 139–144.

    Article  CAS  Google Scholar 

  31. Anderson, T.L., Fracture Mechanics: Fundamentals and Applications, Raton: CRC Press, 2005.

    Google Scholar 

  32. Sanders, J.L., On the Griffith–Irwin Fracture Theory, J. Appl. Mech., 1960, vol. 27, no. 2, pp. 352–355.

    Article  Google Scholar 

  33. Griffith, A.A., The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. A, 1921, vol. 221, no. 582, pp. 163–198.

    Article  Google Scholar 

  34. Yanaba, Y. and Hayashi, K., Relation between fracture surface area of a flexural strength specimen and fracture toughness for WC–10mass%Co cemented carbide and Si3N4 ceramics, Mater. Sci. Eng. A, 1996, vol. 209, no. 1, pp. 169–174.

    Article  Google Scholar 

  35. Banerjee, S., Influence of specimen size and configuration on the plastic zone size, toughness and crack growth, Eng. Fract. Mech., 1981, vol. 15, no. 3, pp. 343–390.

    Article  CAS  Google Scholar 

  36. Putatunda, S.K., and Banerjee, S., Effect of size on plasticity and fracture toughness, Eng. Fract. Mech., 1984, vol. 19, no. 3, pp. 507–529.

    Article  Google Scholar 

  37. Rosenberg, G., The size of plastic zones and fatigue crack growth behavior of three forms of a Ti–6Al–2.5Mo–1.5Cr alloy, Fatigue Fract. Eng. Mater. Struct., 1998, vol. 21, no. 6, pp. 727–739.

    Article  CAS  Google Scholar 

  38. Korda, A.A., Miyashita, Y. and Mutoh, Y., The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels, in The 5th international conference on mathematics and natural sciences, the West University of Timisoara, Timisoara, June 2–4, 2004, vol. 1677, pp. 070013.

    Google Scholar 

  39. Tarrago, J.M., Jimenez-Pique, E., Schneider, L., Casellas, D., Torres, Y., and Llanes, L., FIB/FESEM experimental and analytical assessment of R-curve behavior of WC–Co cemented carbides, Mater. Sci. Eng. A, 2015, vol. 645, pp. 142–149.

    Article  CAS  Google Scholar 

  40. Tarragó, J.M., Coureaux, D., Torres, Y., Casellas, D., Al-Dawery, I., Schneider, L., and Llanes, L., Microstructural effects on the R-curve behavior of WC–Co cemented carbides, Mater. Des., 2016, vol. 97, pp. 492–501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Chen.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Yao, L., Chen, Z. et al. Investigation on the Static Fatigue Mechanism and Effect of Specimen Thickness on the Static Fatigue Lifetime in WC–Co Cemented Carbides. J. Superhard Mater. 40, 118–126 (2018). https://doi.org/10.3103/S1063457618020065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457618020065

Keywords

Navigation