Skip to main content
Log in

Fatigue crack growth and fracture behavior of bismuth-doped copper bicrystals

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Crack growth rate measurements in Cu-Bi bicrystals have shown that for a given cyclic stress intensity factor ΔK, the crack growth rateda/dN increases with increasing Bi concentration. The increase inda/dN is due to the surface energy reduction that occurs because of the presence of bismuth in the copper. For a given bicrystal orientation, the Paris exponentm was found to increase with increasing bismuth content. Them value was found to be between about 0.5 and 3. This finding points to the need for fatigue crack growth theories that incorporate a variation inm in their crack growth laws. The grain boundary fracture surfaces of weak bicrystals showed steps whose formation is thought to arise from the need for bismuth to segregate to low energy surfaces. The results also indicate that the fracture surface energy of weak bicrystals can be lower than that of pure bismuth. This result might help explain the finding that when present, bismuth particles at the boundary tended to pull out of the matrix of one of the single crystals instead of cleaving flush with the boundary. Bismuth coverage at the grain boundary fracture surfaces of weak bicrystals was found to be between about 0.5 and 2 monolayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Rice: ASTM STP 415, 1967, pp. 247–311.

  2. R.G. Forman, V.E. Kearney, and R.M. Engle:J. Basic Eng. Trans., ASME, 1967, vol. 89D, pp. 459–64.

    Google Scholar 

  3. K. Walker: ASTM STP 462, 1970, pp. 1–14.

  4. C.Q. Bowles and D. Broek:Int. J. Fract. Mech., 1972, vol. 8, pp. 75–85.

    Article  Google Scholar 

  5. J. Weertman: inFracture Mechanics, N. Perrone, H. Liebowitz, D. Melville, and W. Pilkey, eds., University Press of Virginia, 1978, pp. 193-204.

  6. J. Weertman:Int. J. Fract. Mech., 1966, vol. 2, pp. 460–67.

    CAS  Google Scholar 

  7. R.M.N. Pelloux:Air Force Conference on Fatigue and Fracture, AFFDL-TR-70-144, 1970, pp. 409–16.

  8. J. Weertman:inFatigue andFracture, ASM, 1979, pp. 279–306.

  9. F.A. McClintock: in ASTM STP 415, C. Laird, ed., 1967, pp. 131–80.

  10. B.A. Bilby, A.H. Cottrell, and K.H. Swinden:Proc. Royal Soc. Lond., 1963, vol. A272, pp. 304–14.

    Article  Google Scholar 

  11. C. Laird and G.C. Smith:Phil. Mag., 1962, vol. 7, pp. 847–57.

    CAS  Google Scholar 

  12. J. Weertman, I.-H. Lin, and R. Thomson:Acta Metall., 1983, vol. 31, pp. 473–82.

    Article  Google Scholar 

  13. J. Weertman:Acta Metall., 1984, vol. 32, pp. 575–84.

    Article  Google Scholar 

  14. R. Thomson:J. Mater. Sci., 1978, vol. 13, pp. 128–42.

    Article  CAS  Google Scholar 

  15. E.R. Filler, Jr., B.R. Lawn, and R. Thomson:Acta Metall., 1980, vol. 28, pp. 1407–14.

    Article  Google Scholar 

  16. R. Thomson and J.E. Sinclair:Acta Metall., 1982, vol. 30, pp. 1325–34.

    Article  Google Scholar 

  17. R. Thomson and E.R. Fuller, Jr.: inMicro and Macro Mechanics of Crack Growth, K. Sadananda, B. Rath, and D. Michel, eds., AIME, 1982, pp. 45-59.

  18. J. Weertman:Acta Metall., 1978, vol. 26, pp. 1731–38.

    Article  Google Scholar 

  19. J. Weertman:J. Mater. Sci., 1980, vol. 15, pp. 1306–10.

    Article  Google Scholar 

  20. J. Weertman: inThree Dimensional Constitutive Relations and Ductile Fracture, S. Nemat-Nasser, ed., North-Holland, 1981, pp. 111–22.

  21. J. Weertman: inMechanics of Fatigue, T. Mura, ed., ASME, 1981, AMD-vol. 47, pp. 11–19.

  22. E.D. Hondros and D. McLean:Phil. Mag., 1974, vol. 29, pp. 771–94.

    CAS  Google Scholar 

  23. B.D. Powell and D.P. Woodruff:Phil. Mag., 1976, vol. 34, pp. 169–76.

    CAS  Google Scholar 

  24. Tentative Test Method for Constant-Load-Amplitude Fatigue Crack Growth Rates Above 10-8m/cycle, E647-78, ASTM STP 738, 1979, pp. 321–26.

  25. H. Tada with the cooperation of P.C. Paris and G.R. Irwin:The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellerton, PA, 1973, p. 2.10.

    Google Scholar 

  26. G. Ertl and J. Kuppers:Low Energy Electrons and Surface Chemistry, Verlag Chemie, Weinheim, Federal Republic of Germany, 1974, pp. 17–51.

  27. S. Chikwembani and J. Weertman: inFATIGUE ’87, R.O. Ritchie and E.A. Stark, Jr., eds., EMAS, U.K., 1987, vol. II, pp. 637–44.

    Google Scholar 

  28. P. Neumann:Acta Metall., 1974, vol. 22, pp. 1155–65.

    Article  CAS  Google Scholar 

  29. S. Chikwembani: Ph.D. Thesis, Northwestern University, Evanston, IL, 1987.

    Google Scholar 

  30. M. Menyhard, B. Blum, C.J. McMahon, Jr., S. Chikwembani, and J. Weertman:J. Physique, 1988, Ser. C, vol. 149, pp. 457–62.

    Google Scholar 

  31. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, and R.E. Weber:Handbook of Auger Electron Spectroscopy, Physi- cal Electronics Industries, Inc., Eden Prairie, MN, 1976, p. 95.

    Google Scholar 

  32. R.W. Hertzberg:Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons, New York, NY, 1983, p. 8.

    Google Scholar 

  33. H. Ishii: Ph.D. Thesis, Northwestern University, Evanston, IL, 1971.

    Google Scholar 

  34. H. Ishii and J. Weertman:Metall. Trans., 1971, vol. 2, pp. 3441–52.

    CAS  Google Scholar 

  35. R.A. Yeske: Ph.D. Thesis, Northwestern University, Evanston, IL, 1973.

    Google Scholar 

  36. R.A. Yeske and J. Weertman:Metall. Trans., 1974, vol. 5, pp. 2033–39.

    Article  CAS  Google Scholar 

  37. H. Vehoff and P. Neumann:Acta Metall., 1979, vol. 27, pp. 915–20.

    Article  CAS  Google Scholar 

  38. H. Vehoff and P. Neumann:Acta Metall., 1983, vol.31, pp. 1781–93.

    Article  Google Scholar 

  39. M. Kaczorowski, C.S. Lee, and W.W. Gerberich:Mater. Sci. and Eng., 1986, vol. 81, pp. 305–15.

    Article  CAS  Google Scholar 

  40. W.W. Gerberich, D.L. Davidson, X.F. Chen, and C.S. Lee:Eng. Fract. Mech., 1987, vol. 28, pp. 505–18.

    Article  Google Scholar 

  41. S. Chikwembani and J. Weertman:Scripta Metall., 1985, vol. 19, pp. 1499–502.

    Article  CAS  Google Scholar 

  42. A. Kelly, W.R. Tyson, and A.H. Cottrell:Phil. Mag., 1967, vol. 15, pp. 567–86.

    CAS  Google Scholar 

  43. F.J. Brandishaw and C. Wheeler:Int. J. Fract. Mech., 1969, vol. 5, pp. 255–68.

    Google Scholar 

  44. J.R. Rellick, C.J. McMahon, H.L. Marcus, and P.W. Palmberg:Metall. Trans., 1971, vol. 2, p. 1492.

    CAS  Google Scholar 

  45. W. Elber: ASTM STP 486, 1971, pp. 230–42.

  46. A. Fraczkiewicz and M. Biscondi:J. Physique, Colloque C4, 1985, suppl. 4, vol. 46, pp. 497–503.

    Google Scholar 

  47. V.K. Kumikov and Kh.B. Khokonov:J. Appl. Phys., 1983, vol. 54, pp. 1346–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Postdoctoral Fellow with the Department of Materials Science and Engineering, Northwestern University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chikwembani, S., Weertman, J. Fatigue crack growth and fracture behavior of bismuth-doped copper bicrystals. Metall Trans A 20, 1221–1231 (1989). https://doi.org/10.1007/BF02647404

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647404

Keywords

Navigation