Skip to main content
Log in

Void/pore distributions and ductile fracture

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The dependence of ductile, microvoid fracture on the size and distribution of voids or pores has been modeled experimentally. Pores or voids have been physically modeled in two dimensions by both random and regular arrays of equi-sized holes drilled through the thickness of tensile specimens of 1100-0 Al sheet and 7075-T6 Al plate and sheet. Fracture strains as well as failure paths have been determined for different hole sizes, spacings, and area fractions. A statistical analysis of the data indicates that increasing the minimum hole spacing, which decreases the degree of hole clustering, increases both strength and ductility. Conversely, decreasing the hole size causes a minor increase in both strength and ductility. Increasing the rate of work hardening is beneficial to ductility in that a high strain hardening rate appears to increase the resistance to flow localization between holes. The results are discussed in terms of a fracture process which depends on shear localization between holes/voids and which is very sensitive to void/pore distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Haynes:The Mechanical Behavior of Sintered Alloys, Freund Publishing House, London, 1981.

    Google Scholar 

  2. I. G. Palmer and G. C. Smith: inProc. Second Bolton Landing Conf. on Oxide Dispersion Strengthening, Gordon and Breach, New York, NY, 1968, pp. 253.

    Google Scholar 

  3. T. B. Cox and J.R. Low.Metall. Trans., 1973, vol. 5, p. 1457.

    Google Scholar 

  4. R. H. Van Stone, R. H. Merchant, and J. R. Low: in ASTM STP 556, 1974, p. 53.

  5. F. A. McClintock:J. Appl. Mech., 1968, vol. 35, p. 363.

    Google Scholar 

  6. D. M. Tracey:Eng. Frac. Mech., 1971, vol. 3, p. 301.

    Article  Google Scholar 

  7. A. Needleman:J. Appl. Mech., 1972, vol. 39, p. 964.

    Google Scholar 

  8. P. F. Thomason:Acta Metall., 1981, vol. 29, p. 763.

    Article  Google Scholar 

  9. P. F. Thomason:Acta Metall., 1985, vol. 33, pp. 1079 and 1087.

    Article  CAS  Google Scholar 

  10. V. Tvergaard:J. Mech. Phys. Solids, 1982, vol. 30, p. 265.

    Article  Google Scholar 

  11. V. Tvergaard:Int. J. Frac., 1981, vol. 17, p. 389.

    Article  Google Scholar 

  12. A. Melander:Mat’l. Sci. and Eng., 1979, vol. 39, p. 57.

    Article  Google Scholar 

  13. A. Melander and U. Stahlberg:Int. J. Frac., 1980, vol. 16, p. 431.

    Article  Google Scholar 

  14. A. Melander:Acta Metall., 1980, vol. 28, p. 1799.

    Article  CAS  Google Scholar 

  15. M. Nagumo:Acta Metall., 1973, vol. 21, p. 1661.

    Article  CAS  Google Scholar 

  16. G. Box, W. Hunter, and J. Hunter:Statistics for Experimenters, J. Wiley & Sons, New York, NY, 1978, p. 306.

    Google Scholar 

  17. E. M. Dubensky and D. A. Koss: inAluminum Alloys—Their Physical and Mechanical Properties, Engineering Materials Advisory Services, Ltd., Warley, U.K., 1986, p. 999.

    Google Scholar 

  18. P. E. Magnusen, Michigan Technological University, D. Srolovitz, Los Alamos National Laboratory, and D. A. Koss, The Pennsylvania State University, unpublished research, 1987.

  19. E. M. Dubensky: M. S. Thesis, Michigan Technological University, 1985.

  20. S. C. Choi:Introductory Applied Statistics in Science, Prentice-Hall, Englewood Cliffs, NJ, 1978.

    Google Scholar 

  21. P. S. Merril:Proc. SESA, 1961, vol. 18, p. 73.

    Google Scholar 

  22. R. I. Bourcier, R. E. Smelser, O. Richmond, and D. A. Koss:Int. J. Frac, 1984, vol. 24, p. 289.

    Google Scholar 

  23. R. J. Bourcier and D. A. Koss: inAdvances in Fracture Research, Pergamon Press, New York, NY, 1980, p. 187.

    Google Scholar 

  24. P. E. Magnusen and J. K. Lee, Michigan Technological University, and D. A. Koss, The Pennsylvania State University, unpublished research, 1986.

  25. P. E. Magnusen, E. M. Dubensky, and D. A. Koss: Technical Report No. 5, Office of Naval Research Contract No. N00014-86-K-0381, Jan. 1987.

  26. D. Teirlinck, M. F Ashby, and J. D. Embury: inProc 6th International Conference on Fracture, Bangalore, India, 1984.

  27. R. J. Bourcier, D. A. Koss, R. E. Smelser, and O. Richmond:Acta Metall., 1986, vol. 34, p. 2443.

    Article  CAS  Google Scholar 

  28. B.I. Edelson:Trans. ASM, 1963, vol. 56, p. 89.

    Google Scholar 

  29. A. J. Durelli and V. J. Parks:Moiré Analysis of Strain, Prentice-Hall, Englewood Cliffs, NJ, 1970, p. 302.

    Google Scholar 

  30. H. Yamamoto:Int. J. Frac, 1978, vol. 14, p. 347.

    Article  Google Scholar 

  31. M. Saje, J. Pan, and A. Needleman:Int. J. Frac, 1982, vol. 19, p. 163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “Stochastic Aspects of Fracture” held at the 1986 annual AIME meeting in New Orleans, LA, on March 2-6, 1986, under the auspices of the ASM/MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubensky, E.M., Koss, D.A. Void/pore distributions and ductile fracture. Metall Trans A 18, 1887–1895 (1987). https://doi.org/10.1007/BF02647018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647018

Keywords

Navigation