Skip to main content
Log in

Stochastic aspects of creep cavitation in ceramics

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Creep fracture of ceramic materials frequently occurs by the nucleation, growth, and coalescence of grain boundary cavities. Recent experimental studies of cavitation kinetics in compression crept ceramics, supported by micromechanical modeling, have identified a number of stochastic aspects of cavitation. The stochastic nature of cavitation arises primarily due to the dependence of both cavity nucleation and cavity growth on grain boundary sliding. A degree of randomness is also imposed by the nonuniform distribution of potential nucleation sites. Pertinent experimental results and micromechanical models are briefly presented and used to support the important role of grain boundary sliding. A stochastic model of grain boundary sliding is then proposed by considering the sliding events to occur as an inhomogeneous Poisson process. Implications of the stochastic nature of cavitation are then discussed in terms of the cavity nucleation, growth, and coalescence processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Evans:Recent Advances in Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D. R. J. Owen, eds., Pineridge Press, Swansea, U.K., 1982, pp. 53–133.

    Google Scholar 

  2. D. Hull and D.E. Rimmer:Phil. Mag., 1959, vol. 4, pp. 673–89.

    CAS  Google Scholar 

  3. R. Raj and M.F. Ashby:Acta Metall., 1975, vol. 23, pp. 653–66.

    Article  Google Scholar 

  4. A.C.F. Cocks:Acta Metall., 1985, vol. 33, pp. 129–37.

    Article  CAS  Google Scholar 

  5. P. M. Anderson and J. R. Rice:Acta Metall., 1985, vol. 33, pp. 409–22.

    Article  CAS  Google Scholar 

  6. R. A. Page and J. Lankford:J. Am. Ceram. Soc, 1983, vol. 66, pp. C?146–148.

    Article  CAS  Google Scholar 

  7. R. A. Page, J. Lankford, and S. Spooner:J. Mater. Sci., 1984, vol. 19, pp. 3360–74.

    Article  CAS  Google Scholar 

  8. R. A. Page, J. Lankford, and S. Spooner:Acta Metall., 1984, vol. 32. pp. 1275–86.

    Article  CAS  Google Scholar 

  9. J. Lankford, K. S. Chan, and R.A. Page:Fracture Mechanics of Ceramics, R. C. Bradt, A. G. Evans, D.P.H. Hasselman, and F.F. Lange, eds., Plenum Press, New York, NY, 1986, pp. 327–47.

    Google Scholar 

  10. R. A. Page, J. Lankford, K. S. Chan, K. Hardman-Rhyne, and S. Spooner:J. Am. Ceram. Soc, 1987, vol. 70, pp. 137–45.

    Article  CAS  Google Scholar 

  11. M. V. Speight and W. Beere:Met. Sci., 1975, vol. 9, pp. 190–91.

    Article  Google Scholar 

  12. R. Raj and C. H. Dang:Phil. Mag., 1975, vol. 32, pp. 909–22.

    CAS  Google Scholar 

  13. K. S. Chan, J. Lankford, and R. A. Page:Acta Metall., 1984, vol. 32, pp. 1907–14.

    Article  CAS  Google Scholar 

  14. K. S. Chan, R. A. Page, and J. Lankford:Acta Metall., 1986, vol. 34, pp. 2361–70.

    Article  CAS  Google Scholar 

  15. G. W. Greenwood:Phil. Mag., 1969, vol. 19, pp. 423–27.

    Google Scholar 

  16. A. Gittens:Met. Sci. J., 1967, vol. 1, pp. 214–16.

    Google Scholar 

  17. I.-W. ChenandA.S.Argon.Acta Metall., 1981,vol. 29,pp. 1321–33.

    Article  Google Scholar 

  18. M. D. Thouless and A. G. Evans:J. Am. Ceram. Soc, 1984, vol. 67, pp. 721–27.

    Article  CAS  Google Scholar 

  19. R. Raj:Acta Metall., 1978, vol. 26, pp. 995–1006.

    Article  CAS  Google Scholar 

  20. A. S. Argon, I.-W. Chen, and C. W. Lau:Creep-Fatigue-Environment Interactions, R. M. Pelloux and N. S. Stoloff, eds., TMS-AIME, New York, NY, 1980, pp. 46–85.

    Google Scholar 

  21. M. H. Yoo and H. Trinkaus:Metall. Trans. A, 1983, vol. 14A, pp. 547–61.

    Google Scholar 

  22. A. J. Perry:J. Mat. Sci., 1974, vol. 9, pp. 1016–39.

    Article  CAS  Google Scholar 

  23. W. D. Nix:Scripta Metall., 1983, vol. 17, pp. 1–4.

    Article  Google Scholar 

  24. A. S. Argon:Scripta Metall., 1983, vol. 17, pp. 5–12.

    Article  Google Scholar 

  25. S. H. Goods and T. G. Nieh:Scripta Metall., 1983, vol. 17, pp. 23–30.

    Article  CAS  Google Scholar 

  26. B. F. Dyson:Scripta Metall., 1983, vol. 17, pp. 31–37.

    Article  Google Scholar 

  27. C. B. Carter, D. L. Kohlstedt, and S. L. Sass:J. Am. Ceram. Soc, 1980, vol. 63, pp. 623–27.

    Article  CAS  Google Scholar 

  28. S. C. Hansen and D.S. Phillips:Phil. Mag., 1983, vol. 47, pp. 209–34.

    CAS  Google Scholar 

  29. K. J. Morrissey and C. B. Carter:J. Am. Ceram. Soc, 1984, vol. 67, pp. 292–301.

    Article  CAS  Google Scholar 

  30. S. M. Wiederhorn, B. J. Hockey, R. F. Krause, Jr., and K. Jakus:J. Mat. Sci., 1986, vol. 21, pp. 810–24.

    Article  CAS  Google Scholar 

  31. A. G.Evans and A.S. Rana:Acta Metall., 1980, vol. 28, pp. 129–41.

    Article  Google Scholar 

  32. J. R. Porter, W. Blumenthal, and A.G. Evans:Acta Metall., 1981, vol. 29, pp. 1899–1906.

    Article  CAS  Google Scholar 

  33. C. S. Hsueh and A. G. Evans:Acta Metall., 1981, vol. 29, pp. 1907–17.

    Article  CAS  Google Scholar 

  34. N. G. Needlam and T. Gladman:Met. Sci. J., 1980, vol. 14, pp. 64–72.

    Article  Google Scholar 

  35. I.-W. Chen and A. S. Argon:Creep and Fracture of Engineering Materials and Structures, B. Wilshire and D. R. J. Owen, eds., Pineridge Press, Swansea, U.K., 1981, pp. 289–302.

    Google Scholar 

  36. R. Raj:Metall. Trans. A, 1975, vol. 6A, pp. 1499–1509.

    Google Scholar 

  37. R. Raj and M.F. Ashby:Metall. Trans., 1971, vol. 2, pp. 1113–27.

    Google Scholar 

  38. A. G. Evans, J. R. Rice, and J. P. Hirth:J. Am. Ceram. Soc, 1980, vol. 63, pp. 368–75.

    Article  CAS  Google Scholar 

  39. H. Hubner and J. Stark:Proceedings of the 6th CIMTEC, Milan, Italy, 1986, in press.

  40. A. G. Evans and T. G. Langdon:Progress in Materials Science, 1976, vol. 21,, no. 3/4 pp. 396–99.

    Article  Google Scholar 

  41. H. Gleiter and B. Chalmers:Progress in Materials Science, 1971, vol. 16, pp. 181–207.

    Google Scholar 

  42. B. F. Dyson:Met. Sci. J., 1976, vol. 10, pp. 349–53.

    Article  Google Scholar 

  43. J. Intrater and E. Machlin:J. Inst. Metals, 1959-60, vol. 88, pp. 305–10.

    Google Scholar 

  44. F. N. Rhines, W. E. Bond, and M. A. Kissel:Trans. ASM, 1956, vol. 48, pp. 919–51.

    Google Scholar 

  45. S. K. Tung and R. Maddin:Trans. AIME, 1957, vol. 209, pp. 905–10.

    Google Scholar 

  46. F. Weinberg:Acta Metall., 1954, vol. 2, pp. 889–90.

    Article  Google Scholar 

  47. F. Weinberg:Trans. AIME, 1958, vol. 212, pp. 808–17.

    CAS  Google Scholar 

  48. K. E. Putlick and R. King:J. Inst. Met., 1951-52, vol. 80, pp. 537–44.

    Google Scholar 

  49. H. Gleiter and B. Chalmers:High-Angle Grain Boundaries, Progress in Mat. Sciences, Pergamon Press, Oxford, 1972, vol. 16, ch. 7, pp. 179–217.

    Google Scholar 

  50. H. J. Larson and B. O. Shubert:Probabilistic Models in Engineering Sciences, Wiley, New York, NY, 1979, vol. 2, ch. 7, pp. 544–83.

    Google Scholar 

  51. S. J. Fairborz, D.G. Harlow, and T. J. Delph:Acta Metall., 1986, vol. 34, pp. 1433–41.

    Article  Google Scholar 

  52. K. S. Chan and R. A. Page: Southwest Research Institute, San Antonio, TX, unpublished research, 1987.

  53. J. S. Wang, J. J. Stephens, and W. D. Nix:Acta Metall., 1985, vol. 33, pp. 1009–21.

    Article  CAS  Google Scholar 

  54. I.-W. Chen:Metall. Trans. A, 1983, vol. 14A, pp. 2289–93.

    CAS  Google Scholar 

  55. K. S. Yu and W. D. Nix:Scripta Metall., 1984, vol. 18, pp. 173–78.

    Article  CAS  Google Scholar 

  56. A. W. Mullendore and N. J. Grant:Trans. AIME, 1963, vol. 227, pp. 319–30.

    CAS  Google Scholar 

  57. B. Fazan, O. D. Sherby, and J. E. Dom:Trans. AIME, 1954, vol. 200, pp. 919–22.

    Google Scholar 

  58. W. Beere and G. K. Knowles:Scripta Metall., 1982, vol. 16, pp. 23–28.

    Article  CAS  Google Scholar 

  59. J. Lankford: Southwest Research Institute, San Antonio, TX, private communication, 1986.

  60. W. Weibull:J. of App. Mech., 1951, vol. 18, pp. 293–97.

    Google Scholar 

  61. F. A. McClintock:Fracture Mechanics of Ceramics, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange, eds., Plenum Press, New York, NY, 1974, vol. 1, pp. 93–101.

    Google Scholar 

  62. R. L. Orr, O. D. Sherby, and J. E. Dorn:Trans. ASM, 1954, vol. 46, pp. 113–28.

    CAS  Google Scholar 

  63. S. J. Fairborz, D.G. Harlow, and T. J. Delph:Acta Metall., 1985, vol. 33, pp. 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “Stochastic Aspects of Fracture” held at the 1986 annual AIME meeting in New Orleans, LA, on March 2-6, 1986, under the auspices of the ASM/MSD Flow and Fracture Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, R.A., Chan, K.S. Stochastic aspects of creep cavitation in ceramics. Metall Trans A 18, 1843–1854 (1987). https://doi.org/10.1007/BF02647014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647014

Keywords

Navigation