Skip to main content
Log in

The influence of gaseous environments on fatigue crack growth in a nickel-copper alloy

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Cyclic crack propagation rates for a 65 pct nickel-33 pct copper alloy in low pressure, 0.013 MPa (100 torr), environments of hydrogen, oxygen, and nitrogen gas were compared to a reference crack propagation rate in a 1.3µPa vacuum. Crack propagation rates were determined over a range of temperatures for vacuum and hydrogen gas at a constant cyclic stress intensity. Crack propagation in the gaseous environment results in an increased crack propagation rate compared to growth rates in vacuum and a unique fracture mor-phology for each environment. Parallel investigations using transmission electron microscopy showed a unique dislocation structure adjacent to the fracture surface corre-sponding to each fracture morphology and environment. Fracture modes were transgran-ular in vacuum and nitrogen gas, transgranular with crystallographically-oriented features in oxygen gas, and intergranular over a range of temperature in hydrogen. A mechanism is suggested to explain gaseous environmental effects based on dislocation-gas atom inter-action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Walter and W. T. Chandler: Rockwell International, Rocketdyne, Canoga Park, California, Report R-7780-1.

  2. D. P. Williams and H. G. Nelson:Met. Trans., 1970, vol. 1, p. 63.

    Article  CAS  Google Scholar 

  3. H. G. Nelson, D. P. Williams, and A. S. Tetelman:Met. Trans., 1971, vol. 2, p. 953.

    Article  CAS  Google Scholar 

  4. H. L. Marcus and P. J. Stocker:An Ultrahigh Vacuum System for Deter- mining the Effects of Gaseous Environments on Fatigue and Fracture Proper-ties of Metals, AGARD Conference Proceedings No. 98, Specialists Meeting on Stress Corrosion Testing Methods, Brussels, Belgium, 1969, reference 16.

  5. W. M. Robertson: Science Center, Rockwell International, unpublished re- search.

  6. S. Mostovoy, R. P. Crosley, and E. J. Ripling:J. Mater., 1967, vol. 2, p. 66.

    Google Scholar 

  7. H. L. Marcus and G. S. Sih:Eng. Fract. Mech., 1971, vol. 3, p. 453.

    Article  CAS  Google Scholar 

  8. J. D. Frandsen, W. L. Morris, and H. L. Marcus: inHydrogen in Metals ASM p. 633, 1974.

  9. R. P. Wei:Int. J. Fract. Mech., 1968, vol. 4, p. 149.

    Article  Google Scholar 

  10. J. D. Frandsen, P. J. Stocker, and H. L. Marcus: Science Center, Rockwell International, Thousand Oaks, California, Report SCTR-72-17.

  11. M. R. Staker and D. L. Holt:Acta Met., 1972, vol. 20, p. 569.

    Article  CAS  Google Scholar 

  12. G.G. Hancock and H.H. Johnson:Trans. TMS-A1ME, 1966, vol. 236, p.513.

    Google Scholar 

  13. W. Hofmann and W. Rauls:Weld. Res. Suppi, 1965, vol. 44, p. 225S.

    CAS  Google Scholar 

  14. W. A. Spitzig, P. M. Talda, and R. P. Wei:Eng. Fract. Mech., 1968, vol. 1, p. 155.

    Article  CAS  Google Scholar 

  15. L. H. Germer and A. U. MacRae:J. Chem. Phys., 1962, vol. 37, p. 1382.

    Article  CAS  Google Scholar 

  16. L. H. Germer and A. U. MacRae:J Chem. Phys., 1962, vol. 36, p. 1555.

    Article  CAS  Google Scholar 

  17. A. H. Purcell and J. Weertman:Met. Trans., 1973, vol. 4, p. 349.

    Article  CAS  Google Scholar 

  18. F. E. Fujit: inFracture of Solids, D. C. Drucker and J. J. Gilman, eds., Interscience Publishers, p. 657, New York, 1963.

    Google Scholar 

  19. A. H. Cottrell and M. A. Jaswon:Proc. Roy. Soc, 1949, vol. A199, p. 104.

    Google Scholar 

  20. F. R. N. Nabarro:Theory of Crystal Dislocations, pp. 461-62, Oxford, London, 1967.

  21. B. A. Wilcox and G. C. Smith: Acta Met., 1964, vol. 12 p. 371.

    Article  CAS  Google Scholar 

  22. J. S. Blakemore:Met. Trans., 1970, vol. 1, p. 145.

    Article  CAS  Google Scholar 

  23. A. H. Windle and G. C. Smith:Met. Sci. J., 1970, vol. 4, p. 136.

    Article  CAS  Google Scholar 

  24. J. S. Blakemore:Met. Trans., 1970, vol. 1, p. 151.

    Article  CAS  Google Scholar 

  25. A. H. Cottrell:Phil. Mag., 1953, vol. 44, p. 829.

    Article  CAS  Google Scholar 

  26. T. Boniszewski and G. C. Smith:ActaMet., 1963, vol. 11, p. 165.

    CAS  Google Scholar 

  27. Anthony W. Thompson:Met. Trans., 1973, vol. 4, p. 2S19 ;Mater. Sci. Eng., 1974, vol. 14, p. 253.

    Google Scholar 

  28. R. Broudeur, J.-P. Fidelle, and H. Auchére: “Experiénce montrant le rôle des dislocations dans le transport de l'hydrogene,”L'Hydrogène Dans Les Metaux, Editions Science le Industrie, Paris, 1972.

  29. M. R. Louthan, Jr., G. R. Caskey, Jr., J. A. Donovan, and D. E. Raul:J. Mater. Sci. Eng., 1972, vol. 10, p. 357.

    Article  CAS  Google Scholar 

  30. A. H. Windle and G. C. Smith:M. Sci. J., 1968, vol. 2, p. 187.

    CAS  Google Scholar 

  31. M. L. Rudee and R. A. Huggins:Phys. Status. Solidi., 1964, vol. 4, p. K101.

    Article  CAS  Google Scholar 

  32. A. S. Tetelman and A. J. McEvily, Jr.:Fracture of Structural Materials, pp. 267–71, John Wiley & Sons, New York, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frandsen, J.D., Paton, N.E. & Marcus, H.L. The influence of gaseous environments on fatigue crack growth in a nickel-copper alloy. Metall Trans 5, 1655–1661 (1974). https://doi.org/10.1007/BF02646339

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646339

Keywords

Navigation