Skip to main content
Log in

The Portevin-Le Chatelier Effect in hydrogenated nickel

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The macroscopic activation energy for the initiation of the serrations which are characteristic of the Portevin-Le Chatelier Effect in hydrogenated nickel, was found to be 0.59 ev at 0.21 at. pct H. This differs markedly from the 0.33 ev previously reported by earlier workers.1 Also, it differs from activation energy for hydrogen diffusion in nickel,Q D , which is reported to be 0.42 ev.13 The difference between the macroscopic activation energy for the disappearance (Q U ) and initiation of the serrations (Q L ) was found to be approximately equal to the binding energy of hydride to dislocations (ΔE), of 0.14 ev. The concentration dependence for the initiation and disappearance of serrations was found to approach a saturation level at approximately 0.08 at. pct H. The dominant dislocation locking mechanism responsible for the serrated yielding is thought to be one involving the drift flow of hydrogen to dislocations under an electrical driving force and the ultimate precipitation of the hydride. Electron microscopy has confirmed that an enhanced dislocation multiplication accompanies serrated yielding in hydrogenated nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Boniszewski and G. C. Smith:Acta Met., 1963, vol. 11, pp. 165–78.

    Article  CAS  Google Scholar 

  2. B. A. Wilcox and G. C. Smith:Acta Met., 1964, vol. 12, pp. 371–76.

    Article  CAS  Google Scholar 

  3. B. A. Wilcox and G. C. Smith:Acta Met., 1965, vol. 13, pp. 331–43.

    Article  CAS  Google Scholar 

  4. A. S. Keh, Y. Nakada, and W. C. Leslie:Dislocation Dynamics, pp. 381–408, McGraw-Hill, New York, 1968.

    Google Scholar 

  5. J. S. Blakemore, W. A. Oates and E. O. Hall:Trans TMS-AIME, 1968, vol. 242, pp. 332–33.

    CAS  Google Scholar 

  6. M. A. Adams:J. Sci. Instr., 1959, vol. 36, pp. 444–46.

    Article  ADS  Google Scholar 

  7. J. S. Blakemore and E. O. Hall:Trans. TMS-AIME, 1968, vol. 242, pp. 333–35.

    CAS  Google Scholar 

  8. A. Portevin and F. Le Chatelier:Acad. Sci. Compt. Rendus, vol. 175, 1923, pp. 507–09.

    Google Scholar 

  9. J. P. Hirth:Dislocation Dynamics, p. 407, McGraw-Hill, New York, 1968.

    Google Scholar 

  10. R. Stickler and R. J. Engle:J. Sci. Inst., vol. 40, 1963, pp. 518–20.

    Article  ADS  Google Scholar 

  11. A. F. Rowcliffe:J. Inst. Metals, vol. 94, 1964, pp. 263–64.

    Google Scholar 

  12. N. D. Greene:Corrosion, 1959, vol. 15, pp. 369–72.

    Google Scholar 

  13. Y. Ebisuzaki, W. J. Kass, and M. O'Keefe:J. Chem. Phys., 1967, vol. 46, pp. 1378–81.

    Article  ADS  CAS  Google Scholar 

  14. A. H. Cottrell:Dislocations and Plastic Flow in Crystals, p. 141, Oxford, 1953.

  15. T. Boniszewski and G. C. Smith:Phys. Chem. Solids, 1961, vol. 21, pp. 115–18.

    Article  ADS  CAS  Google Scholar 

  16. B. E. P. Beeston, I. L. Dillamore, and R. E. Smallman:Metal Sci. J., 1968, vol. 2, pp. 12–14.

    CAS  Google Scholar 

  17. I. Isenberg:Phys. Rev., 1950, vol. 79, pp. 736–37.

    Article  ADS  CAS  MathSciNet  Google Scholar 

  18. A. C. Makrides:J. Phys. Chem., 1964, vol. 68, pp. 2160–69.

    Article  CAS  Google Scholar 

  19. Y. Ebisuzaki and M. O'Keefe:Progress in Solid State Chemistry, p. 187, vol. 4, 1967.

    Article  CAS  Google Scholar 

  20. A. H. Cottrell, S. C. Hunter, and F. R. N. Nabarro:Phil. Mag., 1953, vol. 44, pp. 1064–68.

    CAS  Google Scholar 

  21. A. Sugiyama:J. Phys. Soc. Japan, 1966, vol. 21, no. 10, pp. 1873–80.

    Article  ADS  CAS  Google Scholar 

  22. N. F. Mott:Proc. Camb. Phil. Soc., 1936, vol. 32, pp. 218–90.

    Google Scholar 

  23. N. F. Mott:Proc. Phys. Soc. (London), 1935, vol. 47, pp. 571–80.

    Article  ADS  CAS  Google Scholar 

  24. J. Friedel:Advances in Physics 1954, vol. 3, no. 12, pp. 446–507.

    Article  ADS  Google Scholar 

  25. B. R. Coles:J. Inst. Metals, 1956, vol. 84, pp. 346–48.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. S. BLAKEMORE, formerly International Nickel Research Fellow, Department of Metallurgy, University of Newcastle, N.S.W., Australia,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blakemore, J.S. The Portevin-Le Chatelier Effect in hydrogenated nickel. Metall Trans 1, 145–149 (1970). https://doi.org/10.1007/BF02819254

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02819254

Keywords

Navigation