Skip to main content
Log in

Oxidation of iridium

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Iridium wires self-reistance-heated to temperatures in the range of 1675 to 2260°C (1948 to 2533 K) were oxidized in naturally convected oxygen at pressures in the range of 0.00132 to 1.32 atmospheres (134 to 1.34× 105 Pa). The experimental results were closely corre-lated by a theoretical rate equation based upon control of the oxidation rates by diffusion of Ir(g), IrO2(g) and IrO3(g) through the gaseous boundary layer. Values were obtained for the standard-state free-energies of formation of IrO2(g) and IrO3(g), and their temperature dependencies were described by empirical equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. P. Cordfunke and G. Meyer:Rec. Trav. Chim., 1962, vol. 81, pp. 495–504.

    Article  CAS  Google Scholar 

  2. C. B. Alcock and G. W. Hooper:Proc. Roy. Soc. (London), 1960, vol. A254, pp. 551–61.

    Google Scholar 

  3. V. H. Schäfer and H. J. Heitland:Z. Anorg. Allg. Chem., 1960, vol. 304, pp. 249–65.

    Article  Google Scholar 

  4. J. H. Norman, H. G. Staley, and W. E. Bell:J. Chem. Phys., 1965, vol. 42, pp. 1123–24.

    Article  CAS  Google Scholar 

  5. A. Olivei:J. Less-Common Metals, 1972, vol. 29, pp. 11–23.

    Article  CAS  Google Scholar 

  6. A. Glassner:Thermochemical Properties of the Oxides, Fluorides, and Chlorides to 2500''K, ANL-5750, Argonne Nat. Lab., 1957.

  7. J. L. Margrave: Appendix Aof High Temperature Protective Coatings for Graphite, ML-TDR-64-173, Part IV, National Technical Information Service, Springfield, Virginia, 22151, February 1967.

  8. L. Holborn, F. Henning, and L. Austin:Wiss. Abh. Phys. Tech. Reichsanst., 1904, vol. 4, p. 85; summarized in Ref. 3.

    Google Scholar 

  9. W. L. Phillips, Jr.:Trans. Amer. Soc. Metals, 1964, vol. 57, pp. 33–37.

    CAS  Google Scholar 

  10. C. A. Krier and R. I. Jaffee:J. Less-Common Metals, 1963, vol. 5, pp. 411–31.

    Article  CAS  Google Scholar 

  11. J. M. Criscione, H. F. Volk, J. W. Nuss, R. A. Mercuri, S. Sarian, and F. W. Meszaros:High Temperature Protective Coatings for Graphite, ML-TDR-64-173, Part III, AD479131, same source as Ref. 7, Dec. 1965.

  12. A. K. Kuriakose and J. L. Margrave: Appendix A of Ref. 11.

  13. J. J. Halvorson and R. T. Wimber:J. Appl. Phys., 1972, vol. 43, pp. 2519–22.

    Article  CAS  Google Scholar 

  14. E. H. McLaren, E. G. Murdock, and C. G. M. Kirby:Rev. Sci. Instrum., 1972, vol. 43, pp. 827–28.

    Article  CAS  Google Scholar 

  15. R. E. Honig and D. A. Kramer:Techniques of Metals Research, Vol. IV, Part I, pp. 515–16, R. A. Rapp, ed., Interscience Publishers, J. Wiley & Sons, New York, 1970.

    Google Scholar 

  16. T. K. Sherwood and R. L. Pigford:Absorption and Extraction, 2nd ed., p. 52, McGraw-Hill, N. Y., 1952.

    Google Scholar 

  17. A. Olivei: Laboratorio Circuiti e Memorie, Olivetti S.p.A., 10015-Ivrea (TO), Italy, private communication, 1973.

  18. T. K. Sherwood and R. L. Pigford: op. cit., p. 61.

  19. J. Hilsenrath, C. W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian, and H. W. Woolley:Tables of Thermal Props,of Gases, NBS Circ. 564,1955.

  20. W. M. Rohsenow and J. P. Hartnett:Handbook of Heat Transfer, Section 2, pp. 84–85, McGraw-Hill, New York, 1973.

    Google Scholar 

  21. J. R. Welty, C. E. Wicks, and R. E. Wilson:Fundamentals of Momentum, HeatandMass Transfer, p. 551, J. Wiley and Sons, New York, 1969.

    Google Scholar 

  22. A. J. Madden, Jr. and E. L. Piret:Proceedings of the General Discussion on Heat Transfer, pp. 328–33, Institution of Mech. Engrs. and Amer. Soc. of Mech. Engrs., New York, 1951.

    Google Scholar 

  23. S. Dushman:Scientific Foundations of Vacuum Technique, 2nd ed., p. 30, J. Wiley & Sons, New York, 1962.

    Google Scholar 

  24. R. T. Wimber and J. J. Halvorson:J. Mater., 1972, vol. 7, pp. 564–67.

    CAS  Google Scholar 

  25. C. D.Jones and D. J. Masson:Trans. ASME, 1955, vol. 77, pp. 1275–81.

    Google Scholar 

  26. R. E. Emmert and R. L. Pigford:Chemical Engineers Handbook, 4th ed., Section 14, pp. 20–21, R. H. Perry, ed., McGraw-Hill, New York, 1963.

    Google Scholar 

  27. C.R. Walke and C.Y. Lee:Ind. A Eng. Chem., 1955, vol. 47, pp. 1253–57.

    Article  Google Scholar 

  28. W. E. Bell, M. Tagami, and R. E. Inyard:J. Phys. Chem., 1966, vol. 70, pp. 2048–50.

    Article  CAS  Google Scholar 

  29. E. H, P. Cordfunke and G. Meyer:Rec. Trav. Chim., 1962, vol. 81, pp. 670–78.

    Google Scholar 

  30. R. B. Bird, W. E. Stewart, and E. N. Lightfoot:Transport Phonomena, p. 647, J. Wiley & Sons, N.Y., 1960.

    Google Scholar 

  31. R. W. Bartlett:J. Electrochem. Soc, 1967, vol. 114, pp. 547–50.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimber, R.T., Kraus, H.G. Oxidation of iridium. Metall Trans 5, 1565–1571 (1974). https://doi.org/10.1007/BF02646327

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646327

Keywords

Navigation