Skip to main content
Log in

Structure and properties of a splat cooled 2024 aluminum alloy

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Pound lots of splat cooled 2024 aluminum flake materials were produced by rapidly quenching the atomized melt against a rotating copper disc. Three flake sizes were selected, cold compacted into aluminum cans, and extruded at 300°C at a reduction ratio of 20 to 1. The extruded rods were reduced 50 pct by cold swaging, solution treated at 495°C, water quenched, and naturally aged. The splat cooled 2024 alloy had constituent particles of 1 fim and finer (compared to 5 to 20 μm for the commercial alloy); further, one of the complex constituent phases (AlCuFeMn) was essentially eliminated by the rapid quench. Compared to commercial 2024-T4, the splat cooled 2024 alloys showed 14 to 17 pct increase in yield and tensile strength (no loss of ductility) a seven-fold increase in fatigue life at 30,000 psi, and a large improvement in the 300°F (150°C) stress rupture life in tests beyond 100 h. The fracture characteristics of the splat alloys, while exhibiting excellent to superior ductility, appear inhomogeneous due to the presence of finely dispersed oxide films scattered in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Duwez, R. H. Willens, and W. Klement, Jr.:J. Appl. Phys., 1960, vol. 31, p. 1136.

    Article  CAS  Google Scholar 

  2. N. J. Grant:Fizika 2, Supplement 2, 1970, p. 16.1.

  3. P. Predecki, A. W. Mullendore, and N. J. Grant:Trans. TMS-AIME, 1965, vol. 233, p. 1581.

    CAS  Google Scholar 

  4. R. C. Ruhl:Mat. Sci. Eng., 1967, vol. 1, p. 313.

    Article  Google Scholar 

  5. H. Matyja, B. C. Giessen, and N. J. Grant:J. lnst. Met., 1968, vol. 96, p. 30.

    CAS  Google Scholar 

  6. P. Duwez:Tram. ASM, 1967, vol. 60, p. 605.

    Google Scholar 

  7. J. A. McComb, S. Nenno, and M. Meshii:J. Phys. Soc. Japan, 1964, vol. 19, p. 1691.

    Article  CAS  Google Scholar 

  8. H. Jones:Mat. Sci. Eng., 1969/70, vol. 5, p. 1.

    Article  CAS  Google Scholar 

  9. V. K. Sarin and N. J. Grant:Met. Tram., 1972, vol. 3, p. 757.

    Google Scholar 

  10. P. Duwez, R. H. Willens, and R. C. Crewdson:J. Appl. Phys., 1965, vol. 36, p. 2267.

    Article  CAS  Google Scholar 

  11. H. S. Chen and D. Turnbull:Appl. Phys. Lett., 1967, vol. 10, p. 284.

    Article  CAS  Google Scholar 

  12. R. Ray, B.C. Giessen, and N.J. Grant:Scripta Met., 1968, vol. 2, p. 357.

    Article  CAS  Google Scholar 

  13. A. Revcolevschi and N. J. Grant:Met Trans., 1972, vol. 3, p. 1545.

    Article  CAS  Google Scholar 

  14. L. N. Moskowitz, R. M. Pelloux, and N. J. Grant:Proc. Second International Conference on Superalloys, September 1972, p. 71, MCIC, Columbus, Ohio.

    Google Scholar 

  15. C. Jansen: Ph.D. Thesis, Department of Metallurgy and Materials Science, Massachusetts Institute of Technology, 1971.

  16. M. Itagaki, B. C. Giessen, and N. J. Grant:Trans. ASM, 1968, vol. 61, p. 330.

    CAS  Google Scholar 

  17. M. Moss and D. M. Schuster:Trans. ASM, 1969, vol. 62, p. 201.

    CAS  Google Scholar 

  18. C. P. Hinesley and J. G. Morris:Met. Trans., 1970, vol. 1, p. 1476.

    Article  CAS  Google Scholar 

  19. T. Toda and R. Maddin:Tram. TMS-AIME, 1969, vol. 245, p. 1045.

    CAS  Google Scholar 

  20. J. E. Hilliard:Metal Progress, 1964, vol. 85, p. 99.

    Google Scholar 

  21. J. E. Hilliard and J. W. Cahn:Tram. TMS-AIME, 1961, vol. 221, p. 344.

    CAS  Google Scholar 

  22. E. H. Dix, Jr.: Preprint No. 574, Institute of Aeronautical Sciences, New York, 1955.

  23. Alcoa Research Center, private communication.

  24. F. Keller and G. W. Wilcox:Metal Progress, 1933, vol. 23, p. 38.

    Google Scholar 

  25. G. Phragmen:J. lnst. Metals, 1950, vol. 77, p. 489.

    Google Scholar 

  26. P. R. Sperry:Met. Trans., 1970, vol. 1, p. 1465.

    Article  CAS  Google Scholar 

  27. H. W. Antes and H. Markus:Met. Eng. Quart., 1970, vol. 10, p. 9.

    CAS  Google Scholar 

  28. J. P. Lyle, Jr.:Aluminum, “Properties, Physical Metallurgy and Phase Diagrams”, K. R. Van Horn, ed., American Society for Metals, Metals Park, Ohio, 1967.

    Google Scholar 

  29. C. E. Mobley, A. H. Clauer, and B. A. Wilcox:J. lnst. Met., 1972, vol. 100, p. 142.

    CAS  Google Scholar 

  30. K. Erhardt and N. J. Grant:Fracture, Proc. of the Second International Con- ference on Fracture, Brighton, England, 1969, Chapman and Hall, Ltd., London.

    Google Scholar 

  31. J. C. Grosskreutz: Ibid..

    Google Scholar 

  32. J. C. Grosskreutz, G. C. Shaw, and D. K. Benson: AFML, Wright-Patterson Air Force Base, TR-69-121, 1969.

  33. A. S. Bufferd and N. J. Grant:Trans. ASM, 1967, vol. 60, p. 305.

    CAS  Google Scholar 

  34. Aluminum: Properties, Physical Metallurgy and Phase Diagrams, 1967, vol. 1, p. 22, ASM, Metals Park, Ohio.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Assistant, Department of Metallurgy and Materials Science, Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebo, M., Grant, N.J. Structure and properties of a splat cooled 2024 aluminum alloy. Metall Trans 5, 1547–1555 (1974). https://doi.org/10.1007/BF02646325

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646325

Keywords

Navigation