Skip to main content
Log in

Intrinsic diffusion coefficients and the vacancy flow factor in Dilute Cu-Zn Alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Interdiffusion coefficients in copper-rich copper-zinc solid solutions containing up to 8 at. pct of Zn at 1168 K have been determined by Matano's analysis using semi-infinite diffusion couples consisting of pure copper and Cu-Zn alloys with Kirkendall markers. From the marker shift and Darken's relation, intrinsic diffusion coefficients, DZn and DCu, in the alloys containing 3.2 and 4.7 at. pct of Zn have been determined. Further, using thin plate couples, DZn and DCu in Cu alloys containing 0.9, 2.3, 3.5, and 4.6 at. pct of Zn at 1168 K have been determined by Heumann's method. The ratio of the intrinsic diffusion coefficients, DZn/DCu, has been found to be about two for all the compositions examined. Using the values of the intrinsic diffusion coefficient of copper at infinite dilution of zinc obtained by extrapolating the concentration dependence of DCu, and the self- and impurity diffusion coefficients in pure copper, the vacancy flow factor has been estimated to be - 0.22-0.15 +0.06 at 1168 K. By combining this value of the vacancy flow factor with the solute enhancement factor of solvent diffusion determined by Peterson and Rothman, the correlation factor for impurity diffusion of Zn in Cu at 1168 K has been evaluated to be 0.5, which is in good agreement with the value of 0.47 determined by Peterson and Rothman based on the isotope effect measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. LeClaire:J. Nucl. Mater., 1978, vols. 69 & 70, pp. 70–96.

    Article  Google Scholar 

  2. N. L. Peterson:Diffusion in Solids, Recent Developments, A. S. Nowick and J. J. Burton, eds., Academic Press, New York, NY, 1975, pp. 115–70.

    Google Scholar 

  3. Th. Heumann:J. Phys. F, 1979, vol. 9, pp. 1997–2010.

    Article  CAS  Google Scholar 

  4. K. Hoshino, Y. Iijima, and K. Hirano:Acta Met., 1982, vol. 30, pp. 265–71.

    Article  CAS  Google Scholar 

  5. K. Hoshino, Y. Iijima, and K. Hirano:Trans. JIM, 1981, vol. 22, pp. 527–34.

    CAS  Google Scholar 

  6. N. L. Peterson and S.J. Rothman:Phys. Rev. B, 1970, vol. 2, pp. 1540–48.

    Article  Google Scholar 

  7. J. Kučera, B. Million, and J. Plškoá:Phys. Stat. Sol. (a), 1972, vol. 11, pp. 361–66.

    Article  Google Scholar 

  8. B.B. Argent and D.W. Wakeman:Trans. Faraday Soc, 1958, vol. 54, pp. 799–806.

    Article  CAS  Google Scholar 

  9. D. B. Masson and J. L. Sheu:Metall. Trans., 1970, vol. 1, pp. 3005–09.

    CAS  Google Scholar 

  10. L. C.C. da Silva and R. F. Mehl:Trans. AIME, 1951, vol. 191, pp. 155–74.

    Google Scholar 

  11. G. T. Home and R. F. Mehl:Trans. AIME, 1955, vol. 203, pp. 88–99.

    Google Scholar 

  12. R. Resnick and R.W. Balluffi:Trans. AIME, 1955, vol. 203, pp. 1004–10.

    Google Scholar 

  13. L. S. Darken:Trans. AIME, 1948, vol. 175, pp. 184–201.

    Google Scholar 

  14. Th. Heumann:Z. Naturforsch., 1977, vol. 32a, pp. 54–56.

    Google Scholar 

  15. Th. Heumann and R. Damköhler:Z. Metallk., 1978, vol. 69, pp. 364–69.

    CAS  Google Scholar 

  16. C. Matano:Japan J. Phys., 1933, vol. 8, pp. 109–13.

    CAS  Google Scholar 

  17. K. Hoshino, Y. lijima, and K. Hirano:Trans. JIM, 1980, vol. 21, pp. 674–82.

    CAS  Google Scholar 

  18. K. Hoshino, Y. lijima, and K. Hirano:Phil. Mag. A, 1981, vol. 44, pp. 961–72.

    CAS  Google Scholar 

  19. W. B. Pearson:A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, New York, NY, 1958, pp. 619–23.

    Google Scholar 

  20. J. Hino, C. Tomizuka, and C. Wert:Acta Met., 1957, vol. 5, pp. 41–49.

    Article  CAS  Google Scholar 

  21. S. M. Klotsman, Ya. A. Rabovskiy, V. K. Talinskiy, and A. N. Timofeyev:Fiz. Metal. Metalloved., 1969, vol. 28, pp. 1025–28.

    CAS  Google Scholar 

  22. J. R. Manning:Phys. Rev., 1965, vol. 139, pp. A2027–34.

    Article  Google Scholar 

  23. J.L. Bocquet:Acta Met., 1971, vol. 22, pp. 1–5.

    Article  Google Scholar 

  24. R. Lindström:J. Phys. C, 1974, vol. 7, pp. 3909–29.

    Article  Google Scholar 

  25. R.E. Howard and J. R. Manning:Phys. Rev., 1967, vol. 154, pp. 561–68.

    Article  CAS  Google Scholar 

  26. S. J. Rothman and N.L. Peterson:Phys. Stat. Sol., 1969, vol. 35, pp. 305–12.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

KAZUTOMO HOSHINO, formerly Graduate Student, Tohoku University is now with Materials Science Division, Argonne National Laboratory, Argonne, IL 60439. YOSHIAKI IIJIMA, Instructor, and KENICHI HIRANO, Professor, are both with the Department of Materials Science, Faculty of Engineering, Tohoku University, Sendai 980, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshino, K., IIjima, Y. & Hirano, KI. Intrinsic diffusion coefficients and the vacancy flow factor in Dilute Cu-Zn Alloys. Metall Trans A 13, 1135–1139 (1982). https://doi.org/10.1007/BF02645494

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645494

Keywords

Navigation