Skip to main content
Log in

The effect of matrix strength on the fracture resistance of an alpha-Beta titanium alloy, corona-5

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This paper presents the results of a study of the effect of matrix yield strength, at constant Widmanstätten α microstructure, on the fracture resistance of an α Ti alloy, CORONA-5. Fracture initiation resistance,J q, and the stable crack growth resistance,T, were evaluated by the single specimen, unloading compliance method for four different microstructures and three yield strengths. The microstructures involved coarse or fine Widmanstätten α particles in a heat treated β-matrix; the yield strength ranged from 765 to 1018 MPa. It was found thatJ qY, where σY is the effective yield strength, decreased with increasingσ Y.T/σ Y also decreased with increasing σY for fine structures. For the coarse α structures, however, T/σY revealed intermediate maxima. Coarser structures, in general, revealed higher values ofJ qY andT/σ Y. The cause was found primarily to be due to the effect of increased α particle thickness. The effect of grain size was secondary. JqY increased with increasing tensile strain hardening rate, obtained at the onset of void nucleation. T/σY was found to decrease with increasing tensile void growth rate. In general, JqY and T/σY revealed different relationships with microstructure. Fatigue precrack front- and the stable crack length-tortuosities did not yield any general relationship to fracture resistance at different yield strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Greenfield and H. Margolin:Metall. Trans., 1971, vol. 2, pp. 841–47.

    CAS  Google Scholar 

  2. H. Margolin, M. A. Greenfield, and I. Greenhut:Titanium Science and Technology, Plenum Press, 1973, vol. 3, pp. 1709–18.

    Google Scholar 

  3. J. C. Chesnutt, C. G. Rhodes, and J. C. Williams:Fractography- Microscopic Cracking Processes, ASTM STP 600, 1976, pp. 99–138.

  4. J.P. Hirth and F.H. Froes:Metall. Trans. A, 1977, vol. 8A, pp. 1165–76.

    CAS  Google Scholar 

  5. P.W. Early and S.J. Bums:Scripta Metall., 1977, vol. 11, pp. 867–69.

    Article  CAS  Google Scholar 

  6. K.-H. Schwalbe:Engg. Frac. Mech., 1977, vol. 9, pp. 795–832.

    Article  CAS  Google Scholar 

  7. J. C. Williams, F. H. Froes, J. C. Chesnutt, C. G. Rhodes, and R. G. Berryman:Toughness and Fracture Behavior of Titanium, ASTM STP 651, 1978, pp. 64–114.

  8. W. J. Oberparleiter:Proc. of the 4th European Conference on Fracture, Leoben, Austria, Sept. 22-24, 1982, pp. 110–17.

  9. H.W. Rosenberg, J. C. Chesnutt, and H. Margolin:Application of Fracture Mechanics for Selection of Metallic Structural Materials, ASM, Metals Park, OH, 1982, pp. 213–52.

    Google Scholar 

  10. A. Gysler and G. Liitjering:Titanium Science and Technology, Deutsche Gesellschaft für Metallkunde E.V., 1984, vol. 3, pp. 2001–08.

    Google Scholar 

  11. C.G. Rhodes:Titanium Science and Technology, Deutsche Gesellschaft für Metallkunde E.V., 1984, vol. 3, pp. 2009–14.

    Google Scholar 

  12. H. Wei, G. Liu, and Z. Lai:Titanium Science and Technology, Deutsche Gesellschaft für Metallkunde E.V., 1984, vol. 3, pp. 2015–21.

    Google Scholar 

  13. S. Suresh and A.K. Vasudévan:Mater. Sci. Engg., 1986, vol. 79, pp. 183–90.

    Article  CAS  Google Scholar 

  14. R. O. Ritchie and A. W. Thompson:Metall. Trans. A, 1985, vol. 16A, pp. 233–48.

    CAS  Google Scholar 

  15. G. A. Clarke, W.R. Andrews, P.C. Paris, and D.W. Schmidt:Mechanics of Crack Growth, ASTM STP 590, 1976, pp. 27–42.

  16. ASTM STD 813-81,Annual Book of ASTM Standards, ASTM.

  17. D. Jablonski:Automated Test Methods for Fracture and Fatigue Crack Growth, ASTM STP 877, 1985, pp. 269–97.

  18. Y.H. Jung, K.R. Narendrnath, P.S. Godavarti, and K.L. Murty:Engg. Frac. Mech., in press.

  19. H. Margolin and T. V. Vijayaraghavan:Metall. Trans. A, 1983, vol. 14A, pp. 2043–53.

    CAS  Google Scholar 

  20. H. Margolin:Metall. Trans. A, 1982, vol. 13A, pp. 2191–95.

    Google Scholar 

  21. K. R. Narendrnath and H. Margolin:Metall. Trans. A, 1988, vol. 19A, pp. 1163–71.

    CAS  Google Scholar 

  22. M.A. Greenfield and H. Margolin:Metall. Trans., 1972, vol. 3, pp. 2649–59.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narendrnath, K.R., Margolin, H. The effect of matrix strength on the fracture resistance of an alpha-Beta titanium alloy, corona-5. Metall Trans A 19, 2503–2512 (1988). https://doi.org/10.1007/BF02645478

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645478

Keywords

Navigation