Skip to main content
Log in

The effect of tempering temperature on near- threshold fatigue crack behavior in quenched and tempered 4140 steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Fatigue crack growth in compact tension samples of high purity 4140 steel quenched and tempered to various strength levels was investigated. Tempering temperatures of 200, 400, 550, and 700 °C produced yield strengths from 1600 to 875 MPa, respectively. Crack propagation and crack closure were monitored inK-decreasing tests performed underR = 0.05 loading conditions in laboratory air. Results indicated that as the yield strength increased the crack growth rate increased at a given ΔK and ΔKth decreased. Threshold values varied from 2.8 MPa m1/2 (200 °C temper) to 9.5 MPa m1/2 (700 °C temper). Cracks in the 200 °C tempered samples grew by an intergranular mechanism following prior austenite grain boundaries probably caused by hydrogen embrittlement or tempered martensite embrittlement. Tempering above 200 °C produced transgranular fatigue crack growth. The level of crack closure increased with tempering temperature and with crack propagation in a given tempered condition. Crack closure was caused by a combination of plasticity-induced and oxide-induced mechanisms. The use of an effective stress intensity range based on crack closure consolidated the fatigue crack growth curves and the threshold values for all tempering temperatures except 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Fine and R. O. Ritchie:Fatigue and Microstructure, ASM, Metals Park, OH, 1979, pp. 245–78.

    Google Scholar 

  2. R.O. Ritchie:Metals Science, Aug./Sept. 1977, pp. 368-81.

  3. M. R. James, W. L. Morris, and A. K. Zurek:Fatigue Eng. Mater. Struct., 1983, vol. 6(3), pp. 293–305.

    Article  Google Scholar 

  4. R.O. Ritchie and S. Suresh:Metall. Trans. A, 1982, vol. 13A, pp. 937–40.

    Google Scholar 

  5. D. Davidson and J. Lankford:Fatigue Eng. Mater. Struct., 1983, vol. 6(3), pp. 241–56.

    Article  CAS  Google Scholar 

  6. J. Lankford and D. Davidson:Acta Metall., 1983, vol. 31(8), pp. 1273–84.

    Article  CAS  Google Scholar 

  7. D. Davidson and J. Lankford:Fatigue Eng. Mater. Struct., 1984, vol. 7(1), pp. 29–39.

    Article  Google Scholar 

  8. D. Davidson and J. Lankford:Am. Soc. Test. Mater. Spec. Tech. Publ. 811, 1983, pp. 371-99.

  9. S. Taira, K. Tanaka, and M. Hosina:Am. Soc. Test. Mater. Spec. Tech. Publ. 675, 1979, pp. 135-73.

  10. K. Minakawa and A.J. McEvily:Scripta Metall., 1981, vol. 15, pp. 633–36.

    Article  Google Scholar 

  11. S Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  12. W. Elber:Am. Soc. Test. Mater. Spec. Tech. Publ. 486, 1971, pp. 230-42.

  13. Y. Nakai, K. Tanaka, and T. Nakamichi:Eng. Fract. Mech., 1981, vol. 15, pp. 291–302.

    Article  CAS  Google Scholar 

  14. S. Suresh, G. F. Zamisky, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, pp. 1435–43.

    Google Scholar 

  15. R. O. Ritchie, S. Suresh, and C. M. Moss:J. Eng. Mater. Technol., Trans. ASME Ser. H, 1980, vol. 102, p. 293.

  16. A.T. Stewart:Eng. Fract. Mech., 1980, vol. 13, p. 463.

    Article  CAS  Google Scholar 

  17. J. Masounave and J.-P. Bailon:Scripta Metall., 1976, vol. 10, pp. 165–70.

    Article  CAS  Google Scholar 

  18. H. Suzuki and A.J. McEvily:Metall. Trans. A, 1979, vol. 10A, pp. 475–81.

    CAS  Google Scholar 

  19. Am. Soc. Test. Mater. Specification E 647-78T, Appendix II, Proposed ASTM Test Method for Measurement of Fatigue Crack Growth Rates, 1978.

  20. W. F. Deans and C. E. Richards:J. Test. Eval., 1979, vol. 7(3), pp. 147–54.

    Article  CAS  Google Scholar 

  21. W. W. Gerberich:Hydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 115–47.

    Google Scholar 

  22. C.D. Beachem:Metall. Trans., 1972, vol. 3, p. 437.

    CAS  Google Scholar 

  23. K. Farrell and A.G. Quarrell:J. Iron Steel Inst., 1964, vol. 202, p. 1002.

    CAS  Google Scholar 

  24. G. Krauss:Principles of Heat Treatment of Steel, ASM, Metals Park, OH, 1980, pp. 209–15.

    Google Scholar 

  25. N. Bandyopadhyay and C. J. McMahon, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 1313–25.

    CAS  Google Scholar 

  26. H. L. Ewalds and R. J. H. Wanhill:Fracture Mechanics, Edward Arnold Publishers, London, 1984, pp. 21–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Research Assistant, Department of Materials Science and Engineering, Stanford University, Stanford, CA.

Formerly Professor, Department of Materials Science and Engineering, Stanford University, Stanford, CA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

London, B., Nelson, D.V. & Shyne, J.C. The effect of tempering temperature on near- threshold fatigue crack behavior in quenched and tempered 4140 steel. Metall Trans A 19, 2497–2502 (1988). https://doi.org/10.1007/BF02645477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645477

Keywords

Navigation