Skip to main content
Log in

A finite element model of a persistent slip band based upon electron microscopic evidence

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The initial stage of the fatigue process is the formation of persistent slip bands (psb’s). Recently, it was discovered that psb’s in large grains of an aluminum alloy elongate at a constant rate. This report describes a new model of a psb which accounts for this result. It is proposed that the material within a psb has a wide variation in yield strength: it is very small near the tip, but increases with distance from the tip reaching a maximum value at the initiatory site. This distribution results from softening of the matrix near the tip of the psb due to precipitate dispersal, followed by cyclic hardening of the softened material. The material parameters describing this distribution are based upon microstructural information contained in electron micrographs. Finite element calculations of the strain field show that the plastic strains in the matrix, in a small damage zone near the tip of a psb, are independent of the length of the psb, as required for a constant rate of elongation. Furthermore, the absolute values of plastic strain are consistent with the observed growth rates, while the calculated strains within the psb are in excellent agreement with interferometric data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.E. Frost, K.J. Marsh, and L. P. Pook:Metal Fatigue, Clarendon Press, Oxford, 1974, p. 283.

    Google Scholar 

  2. W. J. Baxter: inThe Behavior of Short Fatigue Cracks, K.J. Miller and E. R. De Los Rios, eds., Mechanical Engineering Publications, Ltd., London, 1986, p. 193.

    Google Scholar 

  3. W. J. Baxter and T. R. McKinney:Metall. Trans. A, 1988, vol. 19A, pp. 83–91.

    CAS  Google Scholar 

  4. O.B. Pedersen, K. V. Rasmussen, and A. T. Winter:Acta Metall., 1982, vol. 30, pp. 57–62.

    Article  CAS  Google Scholar 

  5. J. N. Vincent and L. Rémy: inFracture and the Role of Microstructure, Proc. 4th European Conference on Fracture, Leoben, Austria, K. L. Maurer and F. E. Matzer, eds., Engineering Materials Advisory Services, Ltd., 1982, pp. 353-57.

  6. W. Vogel, M. Wilhelm, and V. Gerold:Acta Metall., 1982, vol. 30, pp. 21–30.

    Article  CAS  Google Scholar 

  7. C.A. Stubbington:Acta Metall., 1964, vol. 12, pp. 931–39.

    Article  CAS  Google Scholar 

  8. P.J.E. Forsyth:Acta Metall., 1963, vol. 11, p. 703.

    Article  Google Scholar 

  9. S. P. Lynch: inFatigue Mechanisms, J. T. Fong, ed., American Society for Testing and Materials, Philadelphia, PA, STP 675, 1979, p. 174.

    Google Scholar 

  10. W. J. Baxter and P.C. Wang:Scripta Metall., 1988, vol. 22, pp. 207–11.

    Article  Google Scholar 

  11. J. Lee and C. Laird:Phil. Mag., 1983, vol. A47, pp. 579–97.

    Google Scholar 

  12. F. R. N. Nabarro:Theory of Crystal Dislocations, Clarendon Press, Oxford, 1967, p. 301.

    Google Scholar 

  13. Hibbitt, Karlsson, and Sorensen, Inc., Rhode Island 02906.

  14. See review by P. Lukáš and M. Klesnil: inCorrosion Fatigue: Chemistry, Mechanics and Microstructure, NACE-2 National Association of Corrosion Engineers, O. F. Devereux, A. J. McEvily, and R.W. Staehle, eds., 1971, pp. 118-32.

  15. R. Wang, H. Mughrabi, S. McGovern, and M. Rapp:Materials Science and Engineering, 1984, vol. 65, pp. 219–33.

    Article  CAS  Google Scholar 

  16. E.E. Lufer and W.N. Roberts:Phil.Mag., 1966, vol. 14,pp. 65–78.

    Google Scholar 

  17. J.R.T. Lloyd, P. Caceres, and B. Ralph:Scripta Metall., 1985, vol. 19, pp. 1475–80.

    Article  CAS  Google Scholar 

  18. W. Vogel, M. Wilhelm, and V. Gerold:Acta Metall., 1982, vol. 30, pp. 31–35.

    Article  CAS  Google Scholar 

  19. A. Plumtree and E. S. Kayali: in6th Int. Conf. on the Strength of Metals and Alloys, Melbourne, Australia, R.C. Gifkins, ed., Perga- mon Press, Oxford, 1982, vol. 2, pp. 913–18.

    Google Scholar 

  20. G. König and W. Blum:Acta Metall., 1980, vol. 28, pp. 519–37.

    Article  Google Scholar 

  21. W. A. Wong, R.J. Bucci, R. H. Stentz, and J.B. Conway: SAE Technical Paper 870094, International Congress and Exposition, Detroit, MI, Feb. 23, 1987.

  22. Aluminum, K.R. Van Horn, ed., ASM, 1967, vol. I.

  23. H. Mughrabi, F. Ackerman, and K. Herz: inFatigue Mechanisms, J.T. Fong, ed., American Society for Testing and Materials, Philadelphia, PA, STP 675, 1979, p. 69.

    Google Scholar 

  24. J. Polak, T. Lepisto, and P. Kettunen:Material Science Engineering, 1985, vol. 74, p. 85.

    Article  CAS  Google Scholar 

  25. M. R. Staker and D. L. Holt:Acta Metall., 1972, vol. 20, pp. 569–79.

    Article  CAS  Google Scholar 

  26. A. W. Thompson:Metall. Trans. A, 1977, vol. 8A, pp. 833–42.

    CAS  Google Scholar 

  27. See,e.g., R. W. K. Honeycombe:The Plastic Deformation of Metals, Edward Arnold, London, 1968, p. 225.

    Google Scholar 

  28. C. Lea, S.J. Brett, and R.D. Doherty:Scripta Metall., 1979, vol. 13, pp. 45–50.

    Article  CAS  Google Scholar 

  29. Y. Brechet, F. Louchet, C. Marchionni, and J.L. Verger-Gaugry:Phil. Mag. A, 1987, vol. 56, pp. 353–66.

    CAS  Google Scholar 

  30. E. Köhler, E. Bischoff, and V. Gerold:Scripta Metall., 1984, vol. 18, pp. 699–702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, W.J., Wang, PC. A finite element model of a persistent slip band based upon electron microscopic evidence. Metall Trans A 19, 2457–2465 (1988). https://doi.org/10.1007/BF02645473

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645473

Keywords

Navigation