Skip to main content
Log in

Fracture toughness of aisi M2 high-speed steel and corresponding matrix tool steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of microstructural variations on the fracture toughness of two tool steels with compositions 6 pct W-5 pct Mo-4 pct Cr-2 pct V-0.8 pct C (AISI M2 high-speed steel) and 2 pct W-2.75 pct Mo-4.5 pct Cr-1 pct V-0.5 pct C (VASCO-MA) was investigated. In the as-hardened condition, the M2 steel has a higher fracture toughness than the MA steel, although the latter steel is softer. In the tempered condition, MA is softer and has a higher fracture toughness than M2. When the hardening temperature is below 1095 °C (2000 °F), tempering of both steels causes embrittlement,i.e., a reduction of fracture toughness as well as hardness. The fracture toughness of both steels was enhanced by increasing the grain size. The steel samples with intercept grain size of 5 (average grain diameter of 30 microns) or coarser exhibit 2 to 3 MPa√m (2 to 3 ksi√in.) higher fracture toughness than samples with intercept grain size of 10 (average grain diameter of 15 microns) or finer. Tempering temperature has no effect on the fracture toughness of M2 and MA steels as long as the final tempered hardness of the steels is constant. Retained austenite has no influence on the fracture toughness of as-hardened MA steel, but a high content of retained austenite appears to raise the fracture toughness of as-hardened M2 steel. There is a temperature of austenitization for each tool steel at which the retained austenite content in the as-quenched samples is a maximum. The above described results were explained through changes in the microstructure and the fracture modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kiyonaga:Toward Improved Ductility and Toughness, Climax Molybdenum Company (Japan) Ltd., 1971, p. 207.

  2. K. Erickson:Scand. J. Met., 1973, vol. 2, p. 197.

    Google Scholar 

  3. U. Häfte, H. Blumenauer, and G. Pusch:Neue Hütte, 1974, vol. 19, no. 1, p. 54.

    Google Scholar 

  4. G. Berry: “Toughness of Tool Materials,” Final S. R. C. Report, Dept. of Mech. Eng., Univ. of Sheffield, 1974.

  5. G. Berry and M. J. Kadhim Al-Tomachi:Proc. 15th International Machine Tool Design and Research Conf., S. Tobias and F. Koenigsberger, eds., MacMillan Press Ltd., 1975, p. 713.

  6. A. R. Johnson:Metall. Trans. A, 1977, vol. 8A, p. 891.

    CAS  Google Scholar 

  7. G. Berry and M. J. Kadhim Al-Tomachi:Metals Technology, 1977, vol. 4, p. 289.

    Google Scholar 

  8. H. Johansson:Metall. Trans. A, 1978, vol. 9A, p. 95.

    CAS  Google Scholar 

  9. L. M. Barker and W. C. Leslie:Fracture 1977, Waterloo, Canada, 1977, vol. 2, p. 305.

    Google Scholar 

  10. L. R. Olsson and H. F. Fischmeister:Powder Met., 1978, no. l, p. 13.

  11. J. A. Rescalvo and B. L. Averbach:Metall Trans. A, 1979, vol. 10A, p. 1265.

    CAS  Google Scholar 

  12. S. C. Lee and F. J. Worzala:Metall. Trans. A, 1981, vol. 12A, p. 1477.

    Google Scholar 

  13. E. Horn and H. Brandis:DEW-Techn. Ber., 1971, vol. 11, no. 3, p. 147.

    Google Scholar 

  14. E. Kula and M. Cohen:Trans. ASM, 1954, vol. 46, p. 727.

    Google Scholar 

  15. A. H. Grobe, G. A. Roberts, and D. S. Chambers:Trans. ASM, 1954, vol. 46, p. 759.

    Google Scholar 

  16. C. Kim, V. Biss, and W. F. Hosford:Metall. Trans. A, 1982, vol. 13A, p. 185.

    CAS  Google Scholar 

  17. J. Durnin and K. A. Ridai:J1SI, 1968, vol. 206, p. 60.

    CAS  Google Scholar 

  18. C. J. M Mahon, Jr.:Temper Embrittlement, ASTM STP 407, 1968, p. 127.

  19. G. Thomas:Metall. Trans. A, 1978, vol. 9A, p. 439.

    CAS  Google Scholar 

  20. H. K. D. H. Bhadeshia and D. V. Edmonds:Metal Sci., 1979, vol. 13, p. 325.

    CAS  Google Scholar 

  21. J. N. Robinson and C. W. Tuck:Eng. Fract. Mech., 1972, vol. 4, p. 377.

    Article  CAS  Google Scholar 

  22. D. A. Curry and J. F. Knott:Metal Sci., 1976, vol. 10, p. 1.

    Article  CAS  Google Scholar 

  23. G. Y. Lai, W. E. Wood, R. A. Clark, V. F. Zackay, and E. R. Parker:Metall. Trans., 1974, vol. 5, p. 1663.

    CAS  Google Scholar 

  24. R. O. Ritchie, B. Francis, and W. L. Server:Metall. Trans. A, 1976, vol. 7A, p. 831.

    CAS  Google Scholar 

  25. R. O. Ritchie and R. M. Horn:Metall. Trans. A, 1978, vol. 9A, p. 331.

    CAS  Google Scholar 

  26. D. S. McDarmaid:Metals Technology, 1978, vol. 5, p. 7.

    CAS  Google Scholar 

  27. W. E. Wood:Eng. Franct. Mech., 1975, vol. 7, p. 219.

    Article  CAS  Google Scholar 

  28. R. A. Grange:Trans. ASM, 1966, vol. 59, p. 26.

    CAS  Google Scholar 

  29. P. Gordon, M. Cohen, and R. S. Rose:Trans. ASM, 1944, vol. 33, p. 411.

    Google Scholar 

  30. M. Cohen:Trans. ASM, 1949, vol. 41, p. 35.

    Google Scholar 

  31. W. C. Leslie and R. L. Miller:Trans. ASM, 1964, vol. 57, p. 972.

    CAS  Google Scholar 

  32. S. D. Antolovich, A. Saxena, and G. R. Chanani:Metall. Trans., 1974, vol. 5, p. 623.

    CAS  Google Scholar 

  33. W. W. Gerberich, P. L. Hemmings, V. F. Zachay, and E. R. Parker:Fracture 1969, Proc. of 2nd Int. Conf. on Fracture, Brighton, U. K., Chapman and Hall Ltd., 1969, p. 288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

CHONGMIN KIM, formerly with Climax Molybdenum Company of Michigan, Ann Arbor, MI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C., Johnson, A.R. & Hosford, W.F. Fracture toughness of aisi M2 high-speed steel and corresponding matrix tool steel. Metall Trans A 13, 1595–1605 (1982). https://doi.org/10.1007/BF02644800

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644800

Keywords

Navigation