Skip to main content
Log in

Fatigue crack propagation in dual-phase steels: Effects of ferritic-martensitic microstructures on crack path morphology

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

microstructures with maximum resistance to fatigue crack extension while maintaining high strength levels. A wide range of crack growth rates has been examined, from ~10-8 to 10-3 mm per cycle, in a series of duplex microstructures of comparable yield strength and prior austenite grain size where intercritical heat treatments were used to vary the proportion, morphology, and distribution of the ferrite and martensite phases. Results of fatigue crack propagation tests, conducted on “long cracks” in room temperature moist air environments, revealed a very large influence of microstructure over the entire spectrum of growth rates at low load ratios. Similar trends were observed at high load ratio, although the extent of the microstructural effects on crack growth behavior was significantly less marked. Specifically, microstructures containing fine globular or coarse martensite in a coarse-grained ferritic matrix demonstrated exceptionally high resistance to crack growth without loss in strength properties. To our knowledge, these microstructures yielded the highest ambient temperature fatigue threshold stress intensity range ΔK0 values reported to date, and certainly the highest combination of strength and ΔK0 for steels (i.e., ΔK0 values above 19 MPa√m with yield strengths in excess of 600 MPa). Such unusually high crack growth resistance is attributed primarily to a tortuous morphology of crack path which results in a reduction in the crack driving force from crack deflection and roughness-induced crack closure mechanisms. Quantitative metallography and experimental crack closure measurements, applied to currently available analytical models for the deflection and closure processes, are presented to substantiate such interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.O. Ritchie:Int. Metall. Rev., 1979, vol. 20, p. 205.

    Google Scholar 

  2. J. Masounave and J.-P. Ballon:Scripta Met., 1976, vol. 10, p. 165.

    Article  Google Scholar 

  3. R.O. Ritchie:Metal Science, 1977, vol. 11, p. 368.

    Article  Google Scholar 

  4. J.P. Lucas and W.W. Gerberich:Mater. Sci. Eng., 1981, vol. 51, p. 203.

    Article  Google Scholar 

  5. S. Suresh, G. F. Zamiski, and R.O. Ritchie: inApplication of 21/4Cr-1Mo Steel for Thick Wall Pressure Vessels, ASTM STP 755, G. S. Sangdahl and M. Semchyshen, eds., American Society for Testing and Materials, Philadelphia, PA, 1982, pp. 49–67.

    Chapter  Google Scholar 

  6. R.O. Ritchie and S. Suresh:Metall. Trans. A, 1982, vol. 13A, p. 937.

    Article  Google Scholar 

  7. G. T. Gray, A. W. Thompson, and J. Williams:Metall. Trans. A, 1983, vol. 14A, p. 421.

    Article  Google Scholar 

  8. S. Suresh and R. O. Ritchie:Int. Metall. Rev., 1984, vol. 25, in press.

  9. J. Y. Koo and G. Thomas:Metall. Trans. A, 1977, vol. 8A, p. 525.

    Article  Google Scholar 

  10. Y. Tomota, N. Tachibana, and K. Kuroki:Trans. ISIJ, 1978, vol. 18, p. 251.

    Google Scholar 

  11. G. R. Speich: inFundamentals of Dual-Phase Steel, R. A. Kot and B. L. Bramfitt, eds., The Metallurgical Society of AIME, Warrendale, PA, 1981, p. 3.

    Google Scholar 

  12. R.G. Davies:Metall. Trans. A, 1978, vol. 9A, p. 41.

    Article  Google Scholar 

  13. N. J. Kim and G. Thomas:Metall. Trans. A, 1981, vol. 12A, p. 483.

    Article  Google Scholar 

  14. H. Suzuki and A.J. McEvily:Metall. Trans. A, 1979, vol. 10A, p. 475.

    Article  Google Scholar 

  15. K. Minakawa, Y. Matsuo, and A. J. McEvily:Metall. Trans. A, 1982, vol. 13A, p. 439.

    Article  Google Scholar 

  16. N. Walker and J. Beevers:Fat. Eng. Mat. Struct., 1979, vol. 1, p. 135.

    Article  Google Scholar 

  17. K. Minakawa and A. J. McEvily:Scripta Met., 1981, vol. 15, p. 633.

    Article  Google Scholar 

  18. I.C. Mayes and T.J. Baker:Fat. Eng. Mat. Struct., 1981, vol. 4, p. 79.

    Article  Google Scholar 

  19. S. Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, p. 1627.

    Article  Google Scholar 

  20. J.A. Wasynczuk, R.O. Ritchie, and G. Thomas:Mater. Sci. Eng., 1984, vol. 62, p. 79.

    Article  Google Scholar 

  21. T. Kunio and K. Yamada: inFatigue Mechanisms, ASTM STP 675, J. T. Fong, ed., American Society for Testing and Materials, Philadelphia, PA, 1979, pp. 342–61.

    Chapter  Google Scholar 

  22. T. Kunio, M. Shimizu, K. Yamada, and H. Nakabayashi: inFatigue Thresholds, J. Bäcklund, A. Blom, and J. Beevers, eds., EMAS Ltd., Warley, U.K., 1982, vol. 1, pp. 409–22.

    Google Scholar 

  23. K. Yamada: Discussion inFatigue Mechanisms, ASTM STP 675, J. T. Fong, ed., American Society for Testing and Materials, Philadelphia, PA, 1979, p. 367.

    Google Scholar 

  24. T. Ishihara: inMechanical Behavior of Materials-IV, Proceedings of Fourth Intl. Conf. (ICM-4), Stockholm, Sweden, J. Carlsson and N.G. Ohlson, eds., Pergamon Press, New York, NY, 1983, vol. 2, p. 1155.

    Google Scholar 

  25. R.J. Bucci: inFracture Mechanics (13th Conference), ASTM STP 743, American Society for Testing and Materials, Philadelphia, PA, 1981, p. 28.

    Book  Google Scholar 

  26. P.K. Liaw, T. R. Leax, R. S. Williams, and M.G. Peck:Metall. Trans. A, 1982, vol. 13A, p. 1607.

    Article  Google Scholar 

  27. W.W. Gerberich, W. Yu, and K. Esaklul:Metall. Trans. A, 1984, vol. 15A, p. 875.

    Article  Google Scholar 

  28. G. Birkbeck, A. E. Inckle, and G. W. J. Waldron:J. Mat. Sci., 1971, vol. 6, p. 319.

    Article  Google Scholar 

  29. R.O. Ritchie and J.F. Knott:Acta Metall., 1973, vol. 21, p. 639.

    Article  Google Scholar 

  30. S. Suresh:Metall. Trans. A, 1983, vol. 14A, p. 2375.

    Article  Google Scholar 

  31. W. Elber:Eng. Fract. Mech., 1970, vol. 2, p. 37.

    Article  Google Scholar 

  32. R.O. Ritchie, S. Suresh, and C. M. Moss:J. Eng. Matls. Tech., Trans. ASME Series H, 1980, vol. 102, p. 293.

    Article  Google Scholar 

  33. A.T. Stewart:Eng. Fract. Mech., 1980, vol. 13, p. 463.

    Article  Google Scholar 

  34. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, p. 1435.

    Article  Google Scholar 

  35. D.L. Davidson:Fat. Eng. Mat. Struct., 1981, vol. 3, p. 229.

    Article  Google Scholar 

  36. S. Suresh: Brown University, Report No. E-153, March dy1984, submitted toMetall. Trans. A.

  37. J.F. McCarver and R.O. Ritchie:Mater. Sci. Eng., 1982, vol. 55, p. 63.

    Article  Google Scholar 

  38. C.E. Richards and T.C. Lindley:Eng. Fract. Mech., 1972, vol. 4, p. 951.

    Article  Google Scholar 

  39. R.O. Ritchie and J.F. Knott:Mater. Sci. Eng., 1974, vol. 14, p. 7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Lecturer and Research Engineer in the Department of Materials Science and Mineral Engineering, University of California

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, V.B., Suresh, S. & Ritchie, R.O. Fatigue crack propagation in dual-phase steels: Effects of ferritic-martensitic microstructures on crack path morphology. Metall Trans A 15, 1193–1207 (1984). https://doi.org/10.1007/BF02644714

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644714

Keywords

Navigation