Skip to main content
Log in

Interdiffusion and intrinsic diffusion in binary vanadium-titanium solid solutions at 1350°C

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Interdiffusion coefficients, intrinsic diffusion coefficients, and vacancy wind parameters have been determined in the vanadium-titanium system at 1350°C with the use of infinite, solid-solid diffusion couples. The experimentally determined diffusion coefficients were compared with the values predicted from the models of Darken, Manning and Dayananda with the use of available tracer diffusion and thermodynamic information and were found to be larger than those calculated from the three models. Vacancy wind parameters, determined experimentally, were seen to reflect a greater influence of the vacancy wind phenomenon on the intrinsic diffusion flux of each species than that calculated on the basis of Manning’s theory. In particular, the faster diffusing component is enhanced and the slower diffusing component is retarded to a greater degree than is theoretically predicted. Furthermore, experimental and predicted values of intrinsic diffusivity ratios,D V /D Ti ,were compared and the results suggest an increased effect of vacancy flow on the intrinsic fluxes with respect to the magnitude of this phenomenon calculated from Manning’s treatment. The vacancy wind effect is shown to be an important factor in the consideration of intrinsic diffusion fluxes and their relation to tracer diffusion and thermodynamic information in the vanadium-titanium system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Adda and J. Philibert:Compte Rendus, 1958, vol. 247, pp. 80–83.

    CAS  Google Scholar 

  2. R. C. Geiss: Air University, U.S. Air Force, MS Thesis, August 1962.

  3. T. C. Reuther, Jr.: U.S. Naval Research Laboratory, NRL Report 6221, December 1964.

  4. C. S. Hartley, J. E. Steedly, Jr., and L. D. Parsons: Air Force Materials Laboratory, Document No. ML-TDR-64-316, December 1964.

  5. R. C. Geiss, C. S. Hartley, and J. E. Steedly, Jr.:J. Less-Common Metals, 1965, vol. 9, pp. 309–20.

    Article  CAS  Google Scholar 

  6. P. Lamparter, S. Steels, and A. Gukelberger:High Temperatures-High Pressures, 1971, vol. 3, pp. 727–40.

    CAS  Google Scholar 

  7. V. S. Raghunathan, G. P. Tiwari, and B. D. Sharma:Met. Trans., 1972, vol. 3, pp. 783–88.

    Article  CAS  Google Scholar 

  8. D. Goold:J. Inst. Metals, 1959-1960, vol. 88, pp. 444–48.

    Google Scholar 

  9. S. G. Fedotov, M. D. Chudinov, and K. M. Konstantinov:Fiz. Metal. Metalloved., 1969, vol. 27, pp. 873–76.

    CAS  Google Scholar 

  10. L. S. Darken:Trans. AIME, 1948, vol. 175, pp. 184–201.

    Google Scholar 

  11. J.R. Manning:Acta Met., 1967, vol. 15, pp. 817–26.

    Article  CAS  Google Scholar 

  12. J. R. Manning:Met. Trans., 1970, vol. 1, pp. 499–505.

    CAS  Google Scholar 

  13. M. A. Dayananda:Met. Trans., 1971, vol. 2, pp. 334–35.

    Article  Google Scholar 

  14. D. J. Schmatz, H. A. Domian, and H. I. Aaronson:J. Appl. Phys., 1966, vol. 37, pp. 1741–43.

    Article  CAS  ADS  Google Scholar 

  15. A. Kohn, J. Levasseur, J. Philibert, and M. Wanin:Acta Met., 1970, vol. 18, pp. 163–73.

    Article  CAS  Google Scholar 

  16. R. O. Meyer:Phys. Rev., 1969, vol. 181, pp. 1086–94.

    Article  CAS  ADS  Google Scholar 

  17. M. J. Dallwitz:Acta Met., 1972, vol. 20, pp. 1229–34.

    Article  CAS  Google Scholar 

  18. N. R. Iorio, M. A. Dayananda, and R. E. Grace:Met. Trans., 1973, vol. 4, pp. 1339–46.

    Article  CAS  Google Scholar 

  19. J. F. Murdock and C. J. McHargue:Acta Met., 1968, vol. 16, pp. 493–500.

    Article  CAS  Google Scholar 

  20. E. J. Rolinski, M. Hoch, and C. J. Oblinger:Met. Tran., 1971, vol. 2, pp. 2613–18.

    Article  CAS  Google Scholar 

  21. M. Hansen:Constitution of Binary Alloys, pp. 1240–42, McGraw-Hill Book Co. New York, 1958.

    Google Scholar 

  22. C. Matano:Japan J. Phys., Trans., 1933, vol. 8, pp. 109–13.

    CAS  Google Scholar 

  23. A. D. Smigelskas and E. O. Kirkendall:Trans. AIME, 1947, vol. 171, pp. 130–42.

    Google Scholar 

  24. T. Heumann:Z. Phys. Chem., 1952, vol. 201, pp. 168–69.

    CAS  Google Scholar 

  25. H. J. deBruin and R. L. Clark:Rev. Sci. Instrum., 1964, vol. 35, pp. 227–28.

    Article  ADS  Google Scholar 

  26. H. R. Ogden and F. C. Holden: Titanium Metallurgical Laboratory, TML Report No. 103, May 1958.

  27. W. J. McG. Tegart:The Electrolytic and Chemical Polishing of Metals in Research and Industry, pp. 50–55, Pergamon Press, London, 1956.

    Google Scholar 

  28. A. G. Guy and A. L. Eiss:Welding Research Supp., November 1957, pp. 473s-80s.

  29. T. O. Ziebold and R. E. Ogilvie:Anal. Chem., 1964, vol. 36, pp. 322–27.

    Article  CAS  Google Scholar 

  30. P. T. Carlson: Oak Ridge National Laboratory, ORNL-5045, June 1975.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, P.T. Interdiffusion and intrinsic diffusion in binary vanadium-titanium solid solutions at 1350°C. Metall Trans A 7, 199–208 (1976). https://doi.org/10.1007/BF02644457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644457

Keywords

Navigation