Skip to main content
Log in

On the calculations of the diffusion coefficients of oxygen and nitrogen in niobium

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The Snoek peaks for oxygen and nitrogen in niobium have been remeasured using a torsion pendulum equipped with LVDT transducers connected to an oscillograph for automatic data recording. The peak temperatures were determined using a new numerical analysis of the peak shape. These new low temperature data have been combined with high temperature direct data and intermediate temperature high frequency internal friction data reported in the literature. When it is assumed that the oxygen and nitrogen] occupied octahedral positions in the niobium matrix, the diffusion coefficients for both oxygen and nitrogen atoms follow a simple Arrhenius behavior. In the temperature range of this analysis (140 to 1000°C for oxygen and 270 to 1800°C for nitrogen) the equationsD = (5.3E - 7) exp - (1.095E5)/RT andD = (2.6E - 6) exp - (1.523E5)/RT apply for the diffusion of oxygen and nitrogen, respectively. Entropy of activation calculations were made using the above activation energies and frequency factors, and the results agree well with reported values for other systems as well as with the theory of Keyes. This good agreement suggests that the assumption that oxygen and nitrogen prefer octahedral sites is probably correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Beshers:ASM Seminar on Diffusion, 1972, pp. 209-40.

  2. R. W. Powers and M. V. Doyle:J Appl. Phys., 1959, vol. 30, pp. 514–24.

    Article  CAS  Google Scholar 

  3. D. N. Beshers:J. Appl. Phys., 1965, vol. 36, pp. 290–300.

    Article  Google Scholar 

  4. T. O. Ogurtani and E. M. Uygur:Trans. Jap. Inst. Metals, 1972, vol. 13, pp. 396–99.

    CAS  Google Scholar 

  5. D. P. Petarra: Ph.D. Thesis, Columbia University, 1962.

  6. A. S. Nowick: ASM Seminar on Resonance and Relaxation in Metals, 1962.

  7. A. S. Nowick and B. S. Berry:IBM Journal, 1961, vol. 5, pp. 297–11; ibid, pp.312-20.

    Google Scholar 

  8. S.N. Tewari:Scr.Met., 1974, vol. 4, pp. 371–75.

    Article  Google Scholar 

  9. M. S. Ahmad and Z. C. Szkopiak:J Phys. Chem. Solids, 1970, vol. 31, pp. 1799–804.

    Article  CAS  Google Scholar 

  10. D. E. Barrow and Z. C. Szkopiak:J. Phys. D, 1970, vol. 3, pp. 1140–43.

    Article  Google Scholar 

  11. U.R Gibala:Trans. TMS-AIME, 1967, vol. 239, pp. 1574–85.

    CAS  Google Scholar 

  12. D. P. Petarra and D. N. Beshers:J. Appl. Phys., 1963, vol. 34, pp. 2739–45.

    Article  Google Scholar 

  13. R. A. Hoffman and C. A. Wert:J. Appl. Phys., 1966, vol. 37, pp. 237–40.

    Article  CAS  Google Scholar 

  14. R. E. Miner, D. F. Gibbons, and R. Gibala:Acta Met., 1970, vol. 18, pp. 419–28.

    Article  CAS  Google Scholar 

  15. J. W. Marx, G. S. Baker, and J. M. Siversten:Acta Met., 1953, vol. l,pp. 193–201.

    Article  Google Scholar 

  16. P. Kofstad:High Temperature Oxidation of Metals, Chapt. VI, John Wiley & Sons, New York, N.Y., 1966.

    Google Scholar 

  17. J. R. Donoso and R. E. Reed-Hill:Met. Trans. A, 1976, vol. 7A, pp. 961–65.

    CAS  Google Scholar 

  18. A. G. Arakelovet al:Fiz. Metal. Metalloved., 1973, vol. 35, pp. 826–31.

    CAS  Google Scholar 

  19. D. J. Van Ooijen and A. S. Vandergroot:ActaMet., 1966, vol. 14, pp. 1008–9.

    CAS  Google Scholar 

  20. C. Y. Ang:ActaMet., 1953, vol. 1, pp. 123–25.

    CAS  Google Scholar 

  21. R. Gibala and C. Wert:ASM Conference on Diffusion in BCC Metals, 1964, pp. 131-48.

  22. C. Wert and C. Zener:Phys. Rev., 1949, vol. 76, pp. 1169–75.

    Article  CAS  Google Scholar 

  23. P., Kofstad and H. Kjollesdal:Trans. TMS-AIME, 1961, vol. 221, pp. 285–95.

    CAS  Google Scholar 

  24. McKee and G. R. Wallwork:J. Less-Common Metals, 1973, vol. 30, pp. 249–58.

    Article  CAS  Google Scholar 

  25. W. M. Albrecht and W. D. Goode: BMI-1360, Battelle Memorial Inst. Publ., 1959.

  26. W. D. Klopp, C. T. Sims, and R. I. Jaffee:Trans. ASM, 1959, vol. 51, pp. 282–98.

    Google Scholar 

  27. Z. C. Szkopiak:J. Less-Common Metals, 1969, vol. 19, pp. 93–103.

    Article  CAS  Google Scholar 

  28. M. W. Mallett, E. M. Baroody, H. R. Nelson, and C. A. Papp:J. Electrochem. Soc, 1953, vol. 100, pp. 103–06.

    CAS  Google Scholar 

  29. R. W. Keyes:J. Chem. Phys., 1958, vol. 29, pp. 467–75; ibid, 1960, vol. 32,pp. 1066-67.

    Article  CAS  Google Scholar 

  30. W. R. Mclntire and J. B. Cohen:Acta Met., 1975, vol. 23, pp. 953–56.

    Article  Google Scholar 

  31. A. P. Litman:Phys. Status Solidi, 1965, vol. 11, pp. K47-K48.

    Google Scholar 

  32. E. I. Sholgin, V. S. Batalov, and V. P. Kocheshkov:Metallofizika, 1971, no. 37, pp. 60-62.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boratto, F.J.M., Reed-Hill, R.E. On the calculations of the diffusion coefficients of oxygen and nitrogen in niobium. Metall Trans A 8, 1233–1238 (1977). https://doi.org/10.1007/BF02643837

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643837

Keywords

Navigation