Skip to main content
Log in

Heat Flow during Rapid Solidification of Undercooled Metal Droplets

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The solidification of undercooled spherical droplets with a discrete melting temperature is analyzed using both a Newtonian and a non-Newtonian (Enthalpy) model. Relationships are established between atomization parameters, the growth kinetics, the interface velocity and undercooling, and other important solidification variables. A new mathematical formulation and solution methodology is developed for simulating the solidification process in an undercooled droplet from a single nucleation event occurring at its surface. The computational mesh used in the enthalpy model is defined on a superimposed bispherical coordinate system. Numerical solutions for the solidification of pure aluminum droplets based on the enthalpy model are developed, and their results are compared to the trends predicted from the Newtonian model. The implications of single vs multiple nucleation events are also discussed. In general, the results indicate that when substantial undercoolings are achieved in a droplet prior to nucleation, the thermal history consists of two distinct solidification regimes. In the first, the interface velocities are high, the droplet absorbs most of the latent heat released, and the external cooling usually plays a minor role. The second regime is one of slower growth, and strongly depends on the heat extraction at the droplet surface. The extent of “rapid solidification”, as determined from the fraction of material solidified at temperatures below a certain critical undercooling, is a function of the nucleation temperature, the particle size, a kinetic parameter, and the heat translow as 10~4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Mehrabian:Rapid Solidification Processing: Principles and Technologies, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitor Publishing Division, Baton Rouge, LA, 1978, p. 9.

    Google Scholar 

  2. J.P. Hirth:Metall. Trans. A, 1978, vol. 9A, p. 401.

    CAS  Google Scholar 

  3. C.G. Levi and R. Mehrabian:Metall. Trans. A, 1982, vol. 13A, p. 221.

    CAS  Google Scholar 

  4. T.Z. Kattamis and R. Mehrabian:J. Vac. Sci. Tech., 1974, vol. 11, p. 1118.

    Article  CAS  Google Scholar 

  5. J. H. Perepezko, D. H. Rasmussen, I. E. Anderson, and C. R. Loper, Jr.:Solidification and Casting of Metals, Proc. of Conference held at the University of Sheffield, July 18-21, 1977, The Metals Society, London, 1979, p. 169.

    Google Scholar 

  6. J. H. Perepezko:Rapid Solidification Processing: Principles and Technologies II, R: Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor Publishing Division, Baton Rouge, LA, 1979, p. 56.

    Google Scholar 

  7. J. Szekely and R. J. Fisher:Metall. Trans., 1970, vol. 1, p. 1480.

    Article  CAS  Google Scholar 

  8. D. J. Hodkin, P. W. Sutcliffe, P. G. Mardon, and L. E. Russel:Powder Met., 1973, vol. 16, p. 277.

    CAS  Google Scholar 

  9. M. R. Glickstein, R. J. Patterson, II, and N. E. Shockley:Rapid Solidification Processing: Principles and Technologies, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor Publishing Division, Baton Rouge, LA, 1978, p. 46.

    Google Scholar 

  10. C.G. Levi and R. Mehrabian:Metall. Trans. B, 1980, vol. 11B, p. 21.

    Article  CAS  Google Scholar 

  11. N. Shamsundar and E. M. Sparrow:Trans. ASME, Series C, 1975, vol. 97, p. 333.

    Google Scholar 

  12. V. S. Arpaci:Conduction Heat Transfer, Addison-Wesley, Reading, MA, 1966, p. 288.

    Google Scholar 

  13. J. W. Cahn, W. B.Hillig, and G. W. Sears:Acta Met., 1964, vol. 12, p. 1421.

    Article  CAS  Google Scholar 

  14. K. A. Jackson, D.R. Uhlmann, and J.D. Hunt:J. Crystal Growth, 1967, vol. 1, p. 1.

    Article  CAS  Google Scholar 

  15. M. E. Glicksman and R. J. Schaefer: J. Crystal Growth 1967, vol. 1, p. 297.

    Article  CAS  Google Scholar 

  16. G. J. Abbaschian and S. F. Ravitz: J. Crystal Growth 1975, vol. 28, p. 16.

    Article  CAS  Google Scholar 

  17. D. Turnbull:Thermodynamics in Physical Metallurgy, American Society for Metals, Metals Park, OH, 1949.

    Google Scholar 

  18. A.D. Pasternak:Phys. Chem. of Liquids, 1972, vol. 3, p. 41.

    Article  CAS  Google Scholar 

  19. Metals Reference Book, 5th edition, C. J. Smithells, ed., Butterworths, London, 1976, p. 944.

    Google Scholar 

  20. P. Moon and D.E. Spencer:Field Theory for Engineers, D. Van Nostrand, Princeton, NJ, 1961, pp. 376–84.

    Google Scholar 

  21. W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, vol. 23, p. 444.

    Article  Google Scholar 

  22. R. F. Sekerka:J. Appl. Phys., 1965, vol. 36, p. 264.

    Article  Google Scholar 

  23. S. R. Coriell and R. F. Sekerka:Rapid Solidification Processing, Principles and Technologies II, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor Publishing Division, Baton Rouge, LA, 1980, p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly a Research Associate at the University of Illinois,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, C.G., Mehrabian, R. Heat Flow during Rapid Solidification of Undercooled Metal Droplets. Metall Trans A 13, 221–234 (1982). https://doi.org/10.1007/BF02643312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643312

Keywords

Navigation