Skip to main content
Log in

Superplasticity and residual tensile properties of a microduplex copper-nickel-zinc alloy

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Structural superplasticity in two phase alloys of the copper-nickel-zinc system (nominal composition in wt. pct Cu-15Ni-38 Zn-0.2 Mn) occurs over a wide range of strain rates in the temperature range 850 to 1050∮F (454 to 565°). The upper temperature limit for super-plastic behavior in this system is determined by the reversion of the fine-grained two-phase structure to a single phase structure in which extensive grain growth is possible. Residual room temperature tensile properties and microstructure of the microduplex alloy after superplastic straining have been studied as a function of test temperature and total super-plastic strain. At test temperatures sufficiently removed from the phase transformation temperature, the high tensile properties and fine microstructure of the starting material are essentially retained after superplastic strains approaching 200 pct. In the immediate vicinity of the phase transformation temperature, rapid degradation of the microduplex structure occurs during superplastic deformation with a consequent severe degradation of the residual room temperature tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Davies, J. W. Edington, C. P. Cutter, and K. A. Padmanabdan:J. Mater. Sci., 1970, vol. S, p. 1091.

    Article  Google Scholar 

  2. R. H. Johnson:Met. Rev., 1970, no. 146, p. 115.

  3. T. Y. M. Al-Naib and J. C. Duncan:Int. J. Mech. Sci, 1970, vol. 12, p. 463.

    Article  Google Scholar 

  4. G. H. Reynolds and R. D. Schelleng:Met. Trans., 1972, vol. 3, p. 1837.

    CAS  Google Scholar 

  5. G. 0. Aubakipov, A. A. Presnyakov, and K. T. Chernausov:Izv. Akad. Nauk SSR, Metalfy, 1969, vol. 4, p. 246.

    Google Scholar 

  6. M. Stamford:Copper, 1969, vol. 3, p. 10.

    Google Scholar 

  7. D. M. R. Taplin and S. Sagat:Mater. Sci. Eng., 1972, vol. 9, p. 53.

    Article  CAS  Google Scholar 

  8. D. M. R. Taplin, G. L. Dunlop, S. Sagat, and R. H. Johnson:Proceedings of the II Inter-American Conference on Materials Technology, Mexico City, 1969, ASME, New York, 1970, p. 253.

    Google Scholar 

  9. H. W. Hayden, R. C. Gibson, H. F. Merrick, and J. H. Brophy:Trans. ASM, 1967, vol. 60, p. 3.

    CAS  Google Scholar 

  10. W. A. Backofen, 1. R. Turner, and D. H. Avery:Trans. ASM, 1964, vol. 57, p. 980.

    Google Scholar 

  11. E. F. Nippes and W. F. Savage:Weld. J., 1949, vol. 28, no. 11, pp. 534–35.

    Google Scholar 

  12. J. Schramm:Kupfer-Nicket-Zinc Legeiningen, Wurzburg, Konrad Triltsch, 1935.

    Google Scholar 

  13. R. T. DeHoff and A. G. Guy: University of Florida, Gainesville, Florida, unpublished research, ONR Contract Report No. N00014-68-A-0173-0011.

  14. H. W. Hayden, S. Floreen, and P. D. Goodell:Met. Trans., 1972, vol. 3, p. 833.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with The International Nickel Company, is now with Gulf Energy and Environmental Systems, Materials Science Department, P. O. Box 608, San Diego, Calif. 92112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schelleng, R.D., Reynolds, G.H. Superplasticity and residual tensile properties of a microduplex copper-nickel-zinc alloy. Metall Trans 4, 2199–2203 (1973). https://doi.org/10.1007/BF02643288

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643288

Keywords

Navigation