Skip to main content
Log in

The activation energy for creep of columbium (Niobium)

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The activation energy for creep of nominally pure columbium (niobium) was determined in the temperature range 0.4 to 0.757TM by measuring strain rate changes induced by temperature shifts at constant stress. A peak in the activation energy vs temperature curve was found with a maximum value of 160 kcal/mole (672 kJ/mole). A pretest heat treatment of 3000F (1922 K) for 30 min (1800 s) resulted in even higher values of activation energy (>600 kcal/mole, 2520 kJ/mole) in this temperature range. The activation energy for the heat-treated columbium (Nb) could not be determined near 0.5TM because of unusual creep curves involving negligible steady-state creep rates and failure at < 5 pct creep strain. It is suggested that the anomalous activation energy values and the unusual creep behavior in this temperature range are caused by dynamic strain aging involving substitutional atom impurities and that this type of strain aging may be in part responsible for the scatter in previously reported values of activation energy for creep of columbium (Nb) near 0.5TM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. S. Basinski:Acta Met, 1957, vol. 5, p. 684.

    Article  Google Scholar 

  2. H. Conrad and H. Wiedersich:Acta Met, 1960, vol. 8, p. 128.

    Article  Google Scholar 

  3. M. J. Hein:Phil. Mag., 1970, vol. 21, p. 1267.

    Google Scholar 

  4. R. L. Fullman, R. P. Correker, and J. C. Fisher:Trans. AIME, 1953, vol. 197, p. 647.

    Google Scholar 

  5. R. Resnick and L. S. Castleman:Trans. TMS-AIME, 1960, vol. 218, p. 307.

    CAS  Google Scholar 

  6. T. S. Lundy and F. R. Winslow:Trans. TMS-AIME, 1965, vol. 233, p. 1533.

    CAS  Google Scholar 

  7. S. L. Robinson and 0. D. Sherby:Acta Met, 1969, vol. 17, p. 109.

    Article  CAS  Google Scholar 

  8. H. Conrad:J. Metals, 1964, vol. 16, p. 582.

    CAS  Google Scholar 

  9. J. H. Bechtold, E. T. Wessel, and L. L. France:Refractory Metal Alloys, p. 25, Interscience Publishers, New York, 1961.

    Google Scholar 

  10. B. A. Wilcox:Refractory Metal Alloys, p. 1, Plenum Press, New York, 1968.

    Google Scholar 

  11. P. R. Landon, J. L. Lytton, and J. E. Dorn:Trans. ASM, 1959, vol. 51, p. 900.

    Google Scholar 

  12. N. R. Borch, L. A. Shepard, and J. E. Dorn:Trans. ASM, 1960, vol. 52, p. 494.

    Google Scholar 

  13. D. Walton, L. Shepard, and J. E. Dorn:Trans. TMS-AIME, 1961, vol. 221, p. 458.

    CAS  Google Scholar 

  14. J. J. Holmes:J. Nucl. Mater., 1964, vol. 18, p. 133.

    Google Scholar 

  15. G. Brunson and B. Argent:J Inst. Metals, 1962–63, vol. 91, p. 293.

    Google Scholar 

  16. D. P. Gregory and G. H. Rowe:Columbium Metallurgy, AIME Conferences, 1960, vol. 10, p. 309.

    Google Scholar 

  17. J. Stoop and p. Shahenian:High Temperature Refractory Metals, Part 2, AIME Conferences, vol. 34, p. 407, 1966.

    Google Scholar 

  18. J. D. Rawson and B. B. Argent:J. Inst. Metals, 1967, vol. 95, p. 212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, M.J., Gulden, M.E. The activation energy for creep of columbium (Niobium). Metall Trans 4, 2175–2180 (1973). https://doi.org/10.1007/BF02643284

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643284

Keywords

Navigation