Skip to main content
Log in

Effect of the Carbon Content on the Structure and Mechanical Properties of a High-Temperature Carbide-Hardening Niobium–Molybdenum Alloy

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The elemental, phase, and structural state of Nb–Mo–C alloys with equiatomic metal contents and 15, 20, 25, and 30 at % C are studied after electron-beam zone melting. In the alloy containing 15 at %, a fine microstructure, which is typical of eutectic alloys, forms; as the carbon content increases, primary carbide crystals appear in the alloy structure. The main carbide phase in all alloys is found to be an NbC-based carbide rather than an Nb2C-based carbide. The component distribution between the phases is studied as a function of the average alloy composition. The results of short-time strength tests of alloy specimens at room temperature and at 1500°C and also their high-temperature bending creep tests are presented. The 100-h creep strength maximum for the alloys is shown to be 200–300 MPa at 1500°C (\(\sigma _{{100}}^{{1500}}\) = 200–300 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. J. Balsone, B. P. Bewlay, M. R. Jackson, P. R. Subramanian, J. C. Zhao, A. Chatterjee, and T. M. Heffernan, “Materials beyond superalloy-exploiting high-temperature composites,” in Structural Intermetallics (Miner., Metals Mater. Soc. AIME, 2001), pp. 99–108.

  2. T. M. Pollock, “Alloy design for aircraft engines,” Nat. Mater. 15 (8), 809–815 (2016).

    Article  CAS  Google Scholar 

  3. I. L. Svetlov, M. I. Karpov, T. S. Stroganova, D. V. Zaitsev, and Yu. Artemenko, “High-temperature creep in situ Nb–Si composites,” Deform. Razrushenie Mater., No. 11, 2–6 (2019).

  4. I. L. Svetlov, M. I. Karpov, A. V. Neuman, and T. S. Stroganova, “Temperature dependence of the ultimate strength of in situ multicomponent Mb–Si–X (X = Ti, Hf, W, Cr, Al, and Mo) composites,” Deform. Razrushenie Mater., No. 10, 17–22 (2017).

  5. S. Miura, M. Aoki, Y. Saeki, K. Ohkubo, T. Mohri, and Y. Mishima, “Effects of Zr on the eutectoid decomposition behavior of Nb3Si into (Nb)/Nb5Si3,” Met. Mater. Trans. A 36 (3), 489–496 (2005).

    Article  Google Scholar 

  6. K. Chattopadhyay, R. Sinha, R. Mitra, and K. K. Ray, “Effect of Mo and Si on morphology and volume fraction of eutectic in Nb–Si–Mo alloys,” Mater. Sci. Eng. A 456 (1–2), 358–363 (2007).

  7. K. S. Chan and D. L. Davidson, “Improving the fracture toughness of constituent phases and Nb-based in situ composites by a computational alloy design approach,” Met. Mater. Trans. A 34 (9), 1833–1849 (2003).

    Article  Google Scholar 

  8. J. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno, and S. Hanada, “High-temperature strength and room-temperature toughness of Nb–W–Si–B alloys prepared by arc melting,” Mater. Sci. Eng. A 364 (1–2), 151–158 (2004).

  9. C. L. Ma, J. G. Li, Y. Tan, R. Tanaka, and S. Hanada, “Microstructure and mechanical properties of Nb/Nb5Si3 in situ composites in Nb–Mo–Si and Nb–W–Si systems,” Mater. Sci. Eng. A 386 (1–2), 375–383 (2004).

  10. Q. Wang, C. Zhou, and S. Wang, “Effect of Zr and Hf additions on microstructure and mechanical properties of Nb–Si based ultrahigh-temperature alloys,” J. Mater. Res. Technol. 9 (6), 15585–15592 (2020).

    Article  CAS  Google Scholar 

  11. R. Ma and X. P. Guo, “Effects of V addition on the microstructure and properties of multielemental Nb–Si based ultrahigh-temperature alloys,” J. Alloys Compd. 845, 156254 (2020).

    Article  CAS  Google Scholar 

  12. R. Ma and X. P. Guo, “Influence of molybdenum content on the microstructure, mechanical properties, and oxidation behavior of multi-elemental Nb–Si based ultrahigh-temperature alloys,” Intermetallics 129, 107053 (2021).

    Article  CAS  Google Scholar 

  13. J. Geng and P. Tsakiropoulos, “A study of the microstructures and oxidation of Nb–Si–Cr–Al–Mo in situ composites alloyed with Ti, Hf, and Sn,” Intermetallics 15 (3), 382–395 (2007).

    Article  CAS  Google Scholar 

  14. R. Ding, I. P. Jones, and H. Jiao, “Effect of Mo and Hf on the mechanical properties and microstructure of Nb–Ti–C alloys,” Mater. Sci. Eng. A 458 (1–2), 126–135 (2007).

  15. R. Ding, H. Jiao, and I. P. Jones, “Effect of Mo on mechanical properties and microstructure of Nb–Ti–C alloys,” Mater. Sci. Eng. A 483–484 (1–2), 199–202 (2008).

  16. X. Zhang, X. He, C. Fan, Y. Li, G. Song, Y. Sun, and J. Huang, “Microstructural and mechanical characterization of multiphase Nb-based composites from Nb–Ti–C–B system,” Intern. J. Refract. Metals Hard Mater. 41, 185–190 (2013).

    Article  Google Scholar 

  17. Y. Tan, C. L. Ma, A. Kasama, R. Tanaka, Y. Mishima, S. Hanada, and J. M. Jang, “Effect of alloy composition on microstructure and high-temperature properties of Nb–Zr–C ternary alloys,” Mater. Sci. Eng. A 341 (1–2), 282–288 (2003).

  18. Z. W. Shi, J. L. Liu, and H. Wei, “Investigation on the microstructure and mechanical behaviors of a laser formed Nb–Ti–Al alloy,” Mater. Char. 162, 110193 (2020).

    Article  CAS  Google Scholar 

  19. W. Wei, J. Sun, S. Zhang, B. liu, K. Yan, J. Qi, and H. Zhang, “Phase precipitation behavior and mechanical properties of multiphase Nb–Ti–C and Nb–Ti–Al—C,” Mater. Sci. Eng. A 815, 141218 (2021).

    Article  CAS  Google Scholar 

  20. Q. Wei, G. Luo, J. Zhang, S. Jiang, P. Chen, Q. Shen, and L. Zhang, “Designing high-entropy alloy–ceramic eutectic composites of MoNbRe0.5TaW(TiC)x with high compressive strength,” J. Alloys Compd. 818, 152846 (2020).

    Article  CAS  Google Scholar 

  21. S. Y. Kamata, D. Kanekon, Y. Lu, N. Sekido, K. Maruyama, G. Eggeler, and K. Yoshimi, “Ultrahigh-temperature tensile creep of TiC-reinforced Mo–Si–B–based alloy,” Sci. Rep. 8 (1), 1–14 (2018).

    Article  CAS  Google Scholar 

  22. T. S. Stroganova, M. I. Karpov, V. P. Korzhov, V. I. Vnukov, D. V. Prokhorov, I. S. Zheltyakova, I. B. Gnesin, and I. L. Svetlov, “Influence of titanium and molybdenum on the structure and mechanical properties of in situ niobium–silicon-based composite,” Izv. Ross. Akad. Nauk, Ser. Fiz. 79 (9), 1300–1304 (2015).

    Google Scholar 

  23. X. Zhang, Y. Li, X. He, X. Liu, Q. Jiang, and Y. Sun, “Microstructural characterization and mechanical properties of Nb–Ti–C–B in situ composites with W addition,” Mater. Sci. Eng. A 646, 332–340 (2015).

    Article  CAS  Google Scholar 

  24. M. Fujikura, A. Kasama, R. Tanaka, and S. Hanada, “Effect of alloy chemistry on the high-temperature strength and room-temperature fracture toughness of advanced Nb-based alloys,” Mater. Trans. 45 (2), 493–501 (2004).

    Article  CAS  Google Scholar 

  25. I. L. Svetlov, O. G. Ospennikova, M. I. Karpov, and Yu. V. Artemenko, “High-temperature borosilicate molybdenum alloys strengthened by titanium carbides. Mo–Si–B–TiC (Review),” Materialovedenie, No. 9, 16–33 (2020).

    Google Scholar 

  26. M. I. Karpov, D. V. Prokhorov, V. I. Vnukov, T. S. Stroganova, B. A. Gnesin, I. B. Gnesin, I. S. Zheltyakova, and I. L. Svetlov, “Structure and high-temperature mechanical properties of high-carbon niobium-based alloys,” Deform. Razrushenie Mater., No. 5, 12–18 (2019).

  27. S. A. Saltykov, Stereometric Metallography, Metallurgiya, Moscow, 1976).

    Google Scholar 

  28. J. Schindelin, I. Arganda-Carreras, E. Frise, et al., “An open-source platform for biological-image analysis,” Nature Methods 9 (7), 676–682 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Gnesin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnesin, I.B., Karpov, M.I., Prokhorov, D.V. et al. Effect of the Carbon Content on the Structure and Mechanical Properties of a High-Temperature Carbide-Hardening Niobium–Molybdenum Alloy. Russ. Metall. 2022, 520–527 (2022). https://doi.org/10.1134/S0036029522050044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522050044

Keywords:

Navigation