Skip to main content
Log in

Elastic constants of binary iron-base alloys

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The Young’s modulus (E) and shear modulus (G) of isotropic Fe and binary Fe-C, Fe-Co, Fe-Cr, Fe-Ir, Fe-Mn, Fe-Ni, Fe-Pt, Fe-Re, Fe-Rh, and Fe-Ru alloys have been determined as functions of composition (0 to 10 at. pet) and temperature (77 to 473 K) by a pulse-echo technique (100 kHz elastic waves). Poisson’s ratio (v) and the bulk modulus (K) have been derived from the values of E and G. The rates of change of E and G with composition (ΔE/Δc and ΔG/Δc) depend on the change of lattice parameter with composition and upon the position of the solute in the periodic table. Both negative and positive values of ΔE/Δc and ΔG/Δc are observed. The values of ΔE/Δc and ΔG/Δc are generally different so that Poisson’s ratio may increase or decrease with composition. Comparable changes in the value ofK/G also occur. These changes cannot be used to predict the effects of alloying additions on the toughness of iron. The temperature dependence of E andG of the alloys is similar to that of iron, decreasing in a nonlinear manner from 77 to 473 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Friedel:Dislocations, Addison Wesley, 1964, Reading, Mass.

    Google Scholar 

  2. R. L. Fleischer:The Strengthening of Metals, 1964, Reinhold, New York, N.Y., pp. 93–139.

  3. S. F. Pugh:Phil Mag., 1954, vol. 45, pp. 823–43.

    CAS  Google Scholar 

  4. D. E. Crutchley and C. N. Reid:High Temperature Materials, Plansee Seminar, 1968, pp. 57–66.

  5. H. Masumoto, S. Sawaya, and M. Kikuchi:Trans. J. Inst. Metals, 1971, vol. 12, pp. 86–89.

    Google Scholar 

  6. E. Schmidtmann, E. Hougardy, and H. Schenk:Arch. Eisenhüttenw., 1965, vol. 36, pp. 191–200.

    CAS  Google Scholar 

  7. Z. Nishiyama:Sci. Rep. Tohoku Univ., 1929, vol. 18, pp. 359–400.

    Google Scholar 

  8. W. Köster:Arch. Eisenhüttenw., 1940, vol. 6, pp. 271–78.

    Google Scholar 

  9. S. Takeuchi:J. Phys. Soc. Jap., 1969, vol. 27, pp. 929–40.

    Article  CAS  Google Scholar 

  10. H. J. Leamy:Acta Met., 1967, vol. 15, pp. 1839–51.

    Article  CAS  Google Scholar 

  11. F. Kayser: Iowa State University, 1971, unpublished work.

  12. H. Musumoto and M. Kikuchi:Trans. J. Inst. Metals, 1971, vol. 12, pp. 90–95.

    Google Scholar 

  13. S. Floreen and H. W. Hayden:Trans. TMS-AIME, 1967, vol. 239, pp. 1405–07.

    CAS  Google Scholar 

  14. W. C. Leslie, R. J. Sober, S. G. Babcock, and S. J. Green:Trans. ASM, 1969, vol. 62, p. 690.

    CAS  Google Scholar 

  15. W. C. Leslie:Met. Trans., 1972, vol. 3, pp. 5–26.

    CAS  Google Scholar 

  16. Panametrics, Inc., 221 Cresent St., Waltham, Mass.

  17. L. C. Lynnworth, E. P. Papadakis, D. R. Patch, and K. A. Fowler:IEE Trans. Nucl. Sci., 1971, vol. NS-18(1), pp. 1–5.

    Google Scholar 

  18. F. C. Nix and D. MacNair:Phys. Rev., 1941, vol. 60, pp. 597–605.

    Article  CAS  Google Scholar 

  19. H. Kolsky:Stress Waves in Solids, Clarendon, Oxford, 1953.

    Google Scholar 

  20. W. Köster and H. Franz:Metals Rev., 1961, vol. 6, pp. 1–55.

    Google Scholar 

  21. W. T. Cooke:Phys. Rev., 1936, vol. 50, pp. 1158–64, and pp. 1165–72.

    Article  Google Scholar 

  22. W. Köster:Z. Metallk., 1971, vol. 62. pp. 123–28.

    Google Scholar 

  23. H. G. Purwins, R. Labusch, and P. Haasen:Z. Metallk., 1966, vol. 57, pp. 867–70.

    CAS  Google Scholar 

  24. R. Bacon and C.S. Smith:Ada Met., 1956, vol. 4, pp. 337–41.

    CAS  Google Scholar 

  25. K. Fuchs:Proc. Roy. Soc, London, 1935, vol. A151, pp. 585–602;Proc. Roy. Soc, London, 1936, vol. A153, p. 622.

    CAS  Google Scholar 

  26. W. B. Daniel and C. S. Smith:Pnys. Rev., 1958, vol. 111, p. 713.

    Article  Google Scholar 

  27. D. S. Hughes and C. Maurette:J. Appl. Phys., 1956, vol. 27, pp. 1184–86.

    Article  CAS  Google Scholar 

  28. L. Zwell, W. C. Leslie, and G. R. Speich: U. S. Steel Research Laboratory, Monroeville, Pa., unpublished research, 1971.

  29. A. Taylor and R. M. Jones:J. Phys. Chem. Solids, 1958, vol. 6, pp. 16–37.

    Article  CAS  Google Scholar 

  30. R. J. Teitel and M. Cohen:AIME Trans., 1949, vol. 185, pp. 285–96.

    Google Scholar 

  31. E. J. Fasiska and H. W. Wagenblast:Trans. TMS-AIME, 1967, vol. 239, pp. 1818–20.

    CAS  Google Scholar 

  32. H. Chessin, S. Arajs, and D. S. Miller:Phys. Chem. Solids, 1963, vol. 24, pp. 261–73.

    Article  CAS  Google Scholar 

  33. H. Chessin, S. Arajs, and D. S. Miller:Advan. X-Ray Anal, 1963, vol. 6, pp. 121–35.

    CAS  Google Scholar 

  34. J. E. Dorn and T. E. Tietz:Metal Progr., 1950, vol. 58, pp. 81–84.

    Google Scholar 

  35. W. Hume-Rothery:Electronic Structures and Alloy Chemistry of the Transition Elements, pp. 83–97, Interscience, N. Y., 1962.

    Google Scholar 

  36. W. Hume-Rothery, H. M. Irving, and R. J. P. Williams:Proc. Roy. Soc, 1951, vol. 208A, pp. 431–43.

    Google Scholar 

  37. J. L. Routbort, C. N. Reid, E. S. Fisher, and D. J. Dever:Acta Met., 1971, vol. 19, pp. 1307–16.

    Article  CAS  Google Scholar 

  38. F. X. Kayser and E. D. Gibson: private communication, Iowa State University, August 11,1971.

  39. W. R. Tyson:Phil. Mag, 1970, vol. 21, pp. 1093–97.

    CAS  Google Scholar 

  40. J. Crangle and C. S. Hallan:Proc. Roy. Soc, 1963, vol. A272, p. 119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speich, G.R., Schwoeble, A.J. & Leslie, W.C. Elastic constants of binary iron-base alloys. Metall Trans 3, 2031–2037 (1972). https://doi.org/10.1007/BF02643211

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643211

Keywords

Navigation