Skip to main content
Log in

An electron microscopy study of precipitation in Cu-Ti sideband alloys

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Electron transmission microscopy and diffraction have revealed directly the fine-scale precipitation processes and the mechanism of formation of the periodic microstructures which characterize the decomposition of Cu-Ti “sideband” alloys. The initial stages of decomposition involve the development of «100» compositional waves giving rise to the well-known sideband or satellite reflections along the «100» directions. This «wave-like» clustering producing a triaxially modulated structure involves the formation of two disordered phases; ordering does not accompany the initial clustering. Prolonged aging produces a periodic array of interpenetrating rods along the «100» directions of the matrix. During aging the periodic structures coarsen according to a t1/3 law. The experimental activation energy for the coarsening of the modulated structures is approximately 48 kcal/ mole. Maximum strength is associated with the formation of the transition phase β’ which forms byin situ transformation of the titanium-rich regions; this transformation is not accompanied by a loss of coherency in the modulated structures at the aging temperatures studied in this investigation. It is suggested that these periodic structures arise from spinodal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Saarivirta and H. S. Cannon:Metals Prog., 1959, vol. 76, p. 81.

    CAS  Google Scholar 

  2. G. T. Murray:Trans. TMS-AIME, 1960, vol. 218, p. 1059.

    CAS  Google Scholar 

  3. C. Bückle and J. Manenc:Mem. Sci. Rev. Met., 1960, vol. 57, p. 435.

    Google Scholar 

  4. U. Heubner and G. Wassermann:Z. Metallk., 1962, vol. 53, p. 152.

    CAS  Google Scholar 

  5. K. Saito, K. Iida, and R. Watanabe:Trans. Nat. Res. Inst. Metals, 1967, vol. 9, p. 267.

    CAS  Google Scholar 

  6. Ye. G. Nesterenko and K. V. Chuistov:Fiz. Met. Metalloted., 1960, vol. 9, p. 140.

    CAS  Google Scholar 

  7. Ye. G. Nesterenko and K. V. Chuistov:Fiz. Met. Metalloved., 1961, vol. 12, p. 567.

    CAS  Google Scholar 

  8. A. D. Korotayev, O. V. Tsinenko, and A. T. Protasov:Fiz. Metal Metalloved., 1968, vol. 26, p. 789.

    Google Scholar 

  9. A. Taylor:X-ray Metallography, p. 507, John Wiley and Sons, 1961.

  10. A. Kelly and R. B. Nicholson:Prog. Mater. Sic, 1963, vol. 10, p. 261.

    Google Scholar 

  11. A. J. Bradley:Proc. Phys. Soc, 1940, vol. 52, p. 80.

    Article  CAS  Google Scholar 

  12. V. Daniel and H. Lipson:Proc. Roy. Soc, 1944, vol. A182, p. 378.

    CAS  Google Scholar 

  13. M. E. Hargreaves:Acta Cryst., 1951, vol. 4, p. 301.

    Article  CAS  Google Scholar 

  14. A. Guinier:Acta Met., 1955, vol. 3, p. 510.

    Article  Google Scholar 

  15. E. Biederman and E. Kneller:Z. Metallic., 1956, vol. 47, p. 289.

    Google Scholar 

  16. T. J. Tiedema, J. Bouman, and W. G. Burgers:Acta Met., 1957, vol. 5, p. 310.

    Article  CAS  Google Scholar 

  17. Yu. D. Tyapkin and M.V. Jibuti:Acta Met., 1971, vol. 19, p. 365.

    Article  Google Scholar 

  18. M. Hillert:Acta Met., 1961, vol. 9, p. 525.

    Article  CAS  Google Scholar 

  19. J. W. Cahn and J. E. Hilliard:J. Chem. Phys., 1958, vol. 28, p. 258; 1959, vol. 31, p. 688.

    Article  CAS  Google Scholar 

  20. J. W. Cahn:Ada Met., 1961, vol. 9, p. 759; 1962, vol. 10, p. 179.

    Google Scholar 

  21. V. F. Zackay and E. R. Parker:High Strength Materials, p. 130, John Wiley and Sons, 1965.

  22. R. K. Ham, J. S. Kirkaldy, and J. T. Plewes:Acta Met., 1967, vol. 15, p. 861.

    Article  CAS  Google Scholar 

  23. R. B. Nicholson and P. J. Tufton:Z. Angew. Phys., 1966, vol. 21, p. 59.

    CAS  Google Scholar 

  24. F. A. Badia, G. N. Kirby, and J. R. Mihalisin:ASM Trans., 1967, vol. 60, p. 395.

    Google Scholar 

  25. J. R. Mihalisin, E. L. Huston, and F. A. Badia:Proc. Second Int. Conf. The Strength of Metals and Alloys, ASM, 1970, vol. II, p. 679.

    Google Scholar 

  26. C. Bückle and J. Manenc:Compt. Rend., 1957, vol. 224, p. 1643.

    Google Scholar 

  27. C. Bückle, B. Genty, and J. Manenc:Rev. Met., 1959, vol. 50, p. 247.

    Google Scholar 

  28. J. Manenc:Ada Met., 1959, vol. 7, p. 124.

    CAS  Google Scholar 

  29. D. H. Ben Israel and M. E. Fine:Ada Met., 1963, vol. 11, p. 1051.

    Google Scholar 

  30. K. Sata:Trans. Japanese Inst. Metals, 1966, vol. 7, p. 27.

    Google Scholar 

  31. L. S. Bushnev, A. D. Korotayev, and A. T. Protasov:Fiz. Met. Metalloved., 1970, vol. 30, p. 63.

    CAS  Google Scholar 

  32. H. T. Michels, I. B. Cadoff, and E. Levine:Met. Trans., 1972, vol. 3, p. 667.

    CAS  Google Scholar 

  33. R. Gevers, J. van Landuyt, and S. Amelinckx:Phys. Status Solidi, 1965, vol. 11, p. 689.

    Google Scholar 

  34. A. Ardell:Phil. Mag., 1967, vol. 16, p. 147.

    CAS  Google Scholar 

  35. N. Karlsson:J. Inst. Metals, 1951, vol. 79, p. 391.

    CAS  Google Scholar 

  36. R. J. Price and A. Kelly:Acta Met., 1963, vol. 11, p. 917.

    Google Scholar 

  37. G. Thomas:Electron Microscopy and Strength of Crystals, p. 793, John Wiley and Sons, 1963.

  38. L. E. Tanner:Phil. Mag., 1966, vol. 14, p. 111.

    CAS  Google Scholar 

  39. Yu. D. Tyapkin:Sov. Phys. Doklady, 1964, vol. 9, pp. 1 and 95;Sov. Phys. Cryst., 1966, vol. 10, p. 418.

    Google Scholar 

  40. Yu. D. Tyapkin and A. V. Gavrilova:Sov. Phys. Cryst., 1964, vol. 9, p. 166.

    Google Scholar 

  41. L. E. Tanner: Ledgemont Laboratory, Kennecott Copper Corporation, private communication.

  42. P. J. Fillingham, H. J. Leamy, and L. E. Tanner:Electron Microscopy and Structure of Materials, G. Thomas, ed., p. 163, University of California Press, Berkeley, 1972.

    Google Scholar 

  43. K. Saito and R. Watanabe:Trans. Nat. Res. Inst. Metals, 1969, vol. 11, p. 153.

    Google Scholar 

  44. D. H. Ben Israel and M. E. Fine:Ada Met., 1963, vol. 11, p. 1051.

    Google Scholar 

  45. P. Schwellinger, H. J. Leamy, and H. Warlimont:Ada Met., 1971, vol. 19, p. 421.

    CAS  Google Scholar 

  46. A. G. Khachaturyan:Phys. Status Solidi, 1969, vol. 35, p. 119.

    CAS  Google Scholar 

  47. A. G. Khachaturyan:IEEE Trans. Mag., 1970, vol. 6, p. 233.

    Article  CAS  Google Scholar 

  48. J. W. Gibbs:Collected Works, vol. 1, pp. 105 and 252, Yale University Press, New Haven, 1948.

    Google Scholar 

  49. D. deFontaine:Ultrafine-Grain Metals, J. J. Burke and V. Weiss, eds., pp. 93–131, Syracuse University Press, N. Y., 1970.

    Google Scholar 

  50. E. P. Butler and G. Thomas:Ada Met., 1970, vol. 18, p. 347.

    CAS  Google Scholar 

  51. E.L. Huston, J. W. Cahn, and J. E. Hilliard:Ada Met., 1966, vol. 14, p. 1053.

    Google Scholar 

  52. D. deFontaine:Acta Met., 1969, vol. 17, p. 477.

    Article  CAS  Google Scholar 

  53. W. E. Krull and R. W. Newman:J. Appl. Cryst., 1970, vol. 3, p. 519.

    Article  CAS  Google Scholar 

  54. S. Nishiguki:J. Japan Inst. Metals, 1956, vol. 20, p. 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornie, J.A., Datta, A. & Soffa, W.A. An electron microscopy study of precipitation in Cu-Ti sideband alloys. Metall Trans 4, 727–733 (1973). https://doi.org/10.1007/BF02643081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643081

Keywords

Navigation