Skip to main content
Log in

Dislocation sources in silicon

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Oxidation induced stacking faults have been observed to function as dislocation generating sources in silicon single crystals when the crystals are annealed at high temperatures. The presence of diffused boron in the silicon results in a large increase in the size of the dislocation colonies generated from the faults. The dislocations generated form three dimensional star shaped colonies with the colonies being decorated by a second phase in the form of fine precipitates or dislocation loops. Depending upon the initial oxidation temperature and the postoxidation annealing treatments both partial and whole dislocations are generated in the samples containing diffused boron. The partial dislocations are 1/3 «111» Frank dislocations and the whole dislocations have Burgers vectors 1/2 «110» and «100». The dislocation loops generated are interstitial and the stacking faults extrinsic in nature. A model is proposed to account for the growth of the colonies. The initial nucleation of the stacking fault is suggested to occur by the formation of an oxide of silicon. Diffusion of boron is postulated to result in a preferential accumulation of boron in the fault with the subsequent growth of the fault occurring when annealing forces in-diffusion of the boron concentrated in the faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Ravi:Met. Trans., 1972, vol. 3, p. 1311.

    CAS  Google Scholar 

  2. J. Bardeen and C. Herring:Imperfections in Nearly Perfect Crystals, W. Shockley, ed., p. 261, John Wiley and Sons, Inc., New York, 1952.

    Google Scholar 

  3. H. J. Queisser and P. G. G. VanLoon:J. Appl. Phys., 1964, vol. 35, p. 3066.

    Article  Google Scholar 

  4. D. J. D. Thomas:Phys. Status Solidi, 1963, vol. 3, p. 2261.

    CAS  Google Scholar 

  5. A. W. Fisher and J. A. Amick:J. Electrochem. Soc, 1966, vol. 113, p. 1054.

    CAS  Google Scholar 

  6. G. R. Booker and W. J. Tunstall:Phil. Mag., 1966, vol. 13, p. 71.

    CAS  Google Scholar 

  7. M. L. Joshi:Acta Met., 1966, vol. 14, p. 1157.

    Article  CAS  Google Scholar 

  8. J. M. Silcock and W. J. Tunstall:Phil. Mag., 1964, vol. 10, p. 361.

    CAS  Google Scholar 

  9. S. Dash and M. L. Joshi:Proceedings of a Symposium held at Gaithersburg, Maryland, 1970, Natl. Bur. Stand. Spec. Publ. No. 337, U.S. GPO, Washington, D.C.

    Google Scholar 

  10. I. R. Sanders and P. S. Dobson:Phil. Mag., 1969, vol. 20, p. 881.

    CAS  Google Scholar 

  11. R. J. Jaccodine and C. M. Drum:Appl Phys. Lett., 1966, vol. 8, p. 29.

    Article  CAS  Google Scholar 

  12. A. Mayer:RCA Rev., 1970, vol. 31, p. 414.

    CAS  Google Scholar 

  13. L. Fiermans and J. Vennik:Phys. Status Solidi, 1965, vol. 12, p. 277.

    CAS  Google Scholar 

  14. L. Fiermans and J. Vennik:Phys. Status Solidi, 1967, vol. 21, p. 627.

    CAS  Google Scholar 

  15. L. Fiermans and J. Vennik:Phys. Status Solidi, 1967, vol. 22, p. 463.

    CAS  Google Scholar 

  16. E. Nes and J. Washburn:J. Appl. Phys., 1971, vol. 42, p. 3562.

    Article  CAS  Google Scholar 

  17. C. R. Booker and R. Stickler:Brit. J. Appl. Phys., 1962, vol. 13, p. 446.

    Article  CAS  Google Scholar 

  18. E. Sirtl and A. Adler:Z. Metallk., 1961, vol. 52, p. 529.

    CAS  Google Scholar 

  19. J. Whelan and P. B. Hirsch:Phil. Mag., 1957, vol. 2, pp. 1121, 1303.

    CAS  Google Scholar 

  20. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan:Electron Microscopy of Thin Crystals, Butterworths, London, 1965.

    Google Scholar 

  21. P. B. Hirsch, A. Howie, and M. J. Whelan:Phil. Trans., 1960, vol. A252, p. 499.

    Google Scholar 

  22. A. Howie and M. J. Whelan:Proc. Roy. Soc, London, 1961, vol. A262, p. 217.

  23. M. J. Ashby and L. M. Brown:Phil. Mag., 1963, vol. 8, p. 1083.

    Google Scholar 

  24. Shiro Horiuchi and Jio Yamaguchi:J. Appl. Phys., Japan, 1962, vol. 1, p. 314.

  25. A. Fourdeaux and A. Bergezan:C. R. Acad. Sci., Paris, 1961, vol. 252, p. 1462.

  26. P. B. Hirsch, A. Howie and M. J. Whelan:Proc. Roy. Soc, London, 1962, vol. A267, p. 206.

  27. J. D. Embury and R. B. Nicholson:J. Inst. Metals, 1962-63, vol. 91, p. 119.

    Google Scholar 

  28. R. M. Thomson and R. W. Balluffi:J. Appl. Phys., 1962, vol. 33, p. 803.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, K.V. Dislocation sources in silicon. Metall Trans 4, 681–689 (1973). https://doi.org/10.1007/BF02643075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643075

Keywords

Navigation