Skip to main content
Log in

The effect of an intercritical heat treatment on temper embrittlement of a Ni-Cr-Mo-V rotor steel

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The effect of an intercritical heat treatment on tempor embrittlement has been investigated for a rotor steel containing 0.25 pct C, 3.5 pct Ni, 1.7 pct Cr, 0.5 pct Mo, 0.1 pct V, and deliberate additions of phosphorus, tin, or antimony. Both martensitic and bainitic steels were held at the intercritical temperature of 1380°F (750°C) for times up to 40 h and were then quenched or cooled to obtain martensitic or bainitic transformation. The steels were then tempered, followed by water quenching or step cooling from the tempering temperature. The residual ferrite maintained a fine plate-like shape even after 40 h at the intercritical temperature. Embrittlement induced by step cooling from the final tempering was mark edly reduced by the intercritical treatment as compared to the embrittlement observed after conventional heat treatment; for example, AFATT, the increase in the Charpy V-notch 50 pct shear fracture transition temperature caused by step cooling, was reduced by at least 80°F (45°C) as a result of the intercritical treatment of steels containing 0.02 pct P. Molybdenum effectively reduced AFATT in intercritlcally heat-treated steels as well as in conventionally treated steels. Possible mechanisms for reducing temper embrittlement with the intercritical treatment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Low, Jr.: “Temper Brittleness-A Review of Recent Work,”Proc. of the Conf. on Fracture of Engineering Materials, ASM, 1964, pp. 127–42.

  2. C. J. McMahon, Jr.:Temper Brittleness-An Interpretive Review, ASTM STP 407, 1968, pp. 127–67.

  3. R. Viswanathan:Met. Trans., 1971, vol. 2, pp. 809–15.

    Article  CAS  Google Scholar 

  4. A. Joshi and D. F. Stein:Temper Embrittlement of Low Alloy Steels, ASTM STP 499, 1972, pp. 59–89.

  5. H. L. Marcus, L. H. Hackett, Jr., and P. W. Palmberg:Effect of Solute Elements on Temper Embrittlement of Low Alloy Steels, ASTM STP 499, 1972, pp. 90–103.

  6. J. R. Low, Jr., D. F. Stein, A. M. Turkalo, and R. P. Laforce:Trans. TMS-AIME, 1968, vol. 242, pp. 14–24.

    CAS  Google Scholar 

  7. W. Steven and K. Balajiva:J. Iron Steel Inst., 1959, vol. 193, pp. 141–47.

    CAS  Google Scholar 

  8. A. E. Powers:Trans. ASM, 1956, vol. 48, pp. 149–64.

    Google Scholar 

  9. A. E. Powers:J. Iron Steel Inst., 1957, vol. 186, pp. 323–28.

    CAS  Google Scholar 

  10. A. S. Keh and W. C. Porr:Trans. ASM, 1960, vol. 52, pp. 81–94.

    CAS  Google Scholar 

  11. E. F. Steeb and P. C. Rosenthal:Trans. TMS-AIME, 1958, vol. 212, pp. 706–07.

    CAS  Google Scholar 

  12. J. J. Irani, M. J. May, and D. Elliott:’Effect of Thermal and Thermomechanical Treatment on the Temper Embrittlement of Low-Alloy Steels, ASTM STP 407, 1968, pp. 168–202.

  13. J. Z. Briggs:Chaudronnerie-Tôlerie, January 1971, pp. 1–16.

  14. B. G. Sazonov:Metalloved. Obrab. Metall, USSR, 1957, No. 4, pp. 30–34.

  15. J. H. Roux:Mem. Sci. Rev. Met., 1960, vol. 57, pp. 507–19.

    Google Scholar 

  16. K. Born and K. Haarmann:Arch. Eisenhuettenw., 1969, vol. 40, pp. 57–66.

    CAS  Google Scholar 

  17. D. A. Sarno, F. E. Havens, and D. L. Bowley: “Transformations Involved in Developing Notch Toughness in a New 5 pct Nickel Steel for Cryogenic Application,” a paper presented at the ASM Materials Engineering Congress, October 1970, Report C70-39, 2.

  18. S. Yano, K. Aoki, H. Mimura, and H. Sakurai: “Toughness of the Specially Heat Treated 6 pct Ni Steel,” a paper presented at the Spring Meeting of the Iron and Steel Institute of Japan, April 1971,Tetsu-to-Hagane, 1971, vol. 57, S199.

  19. J. Léger, Ph. Maynier, M. Toitot, and P. Bastien:Mem. Sci. Rev. Met., 1971, vol. 68, pp. 313–24.

    Google Scholar 

  20. A. M. Polyakova and V. D. Sadovsky:Met. Sci. Heat. Treat., 1970, January–February, pp. 4–6.

  21. Research Sub-Group on Temper Embrittlement, ASTM Special Task Force on Large Turbine and Generator Rotors, Subcommittee VI on Forgings of ASTM Committee A-1 on Steel: “Temper Embrittlement Study of Ni-Cr-Mo-V Rotor Steels: Part I-Effect of Residual Elements,” ASTM STP 499, 1972, pp. 3–36.

  22. J. Chipman:Met. Trans., 1972, vol. 3, pp. 55–64.

    Article  CAS  Google Scholar 

  23. M. Hillert, T. Wada, and H. Wada:J. Iron Steel Inst., 1967, vol. 205, pp. 539–46.

    Google Scholar 

  24. W. A. Fischer, K. Lorenz, H. Fabritius, A. Hoffmann, and G. Kalwa:Arch. Eisenhuettenw., 1966, vol. 37, pp. 79–86.

    CAS  Google Scholar 

  25. L. Kaufman,Trans. TMS-AIME, 1959, vol. 215, pp. 218–23.

    CAS  Google Scholar 

  26. W. A. Fischer, K. Lorenz, H. Fabritius, and D. Schlegel:Arch. Eisenhuettenw., 1970, vol. 41, pp. 489–98.

    CAS  Google Scholar 

  27. K. Bungardt, K. Kind, and W. Oelsen:Arch. Eisenhuettenw., 1956, vol. 27, pp. 61–66.

    CAS  Google Scholar 

  28. K. Narita and S. Koyama:Tetsu-to-Hagane, 1966, vol. 52, pp. 788–91.

    Article  Google Scholar 

  29. E. Snape, F. W. Schaller, and R. M. Forbesjones:Corrosion-NACE, 1969, vol. 25, pp. 380–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wada, T., Doane, D.V. The effect of an intercritical heat treatment on temper embrittlement of a Ni-Cr-Mo-V rotor steel. Metall Trans 5, 231–239 (1974). https://doi.org/10.1007/BF02642946

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642946

Keywords

Navigation