Skip to main content
Log in

Study of the mechanism of anodic dissolution of Cu2S

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The anodic dissolution of Cu2S in sulfuric acid solutions was studied under galvanostatic and potentiostatic conditions. The anodic products were studied by mineralogical and X-ray diffraction methods. In every case, the formation of a digenite Cu1-8S layer is observed at the surface of Cu2S according to 5Cu2S → 5Cu1.8S + Cu++ + 2e A copper concentration gradient appears through the digenite layer whose thickness remains constant as soon as a Cu1.1S layer appears at its own surface according to 3Cu1.8S → 4Cu1.1S + Cu++ + 2e If the electrolysis conditions are such that the anodic potential remains low, the next reaction to occur is 10Cu1.1S → HCu++ + 10S + 22e But if under galvanostatic conditions, the current density is high enough at a given temperature to reach the sharp rise in anodic potential, or if under potentiostatic conditions the potential is kept high, two other reactions are possible: 10Cu1.1S → 10CuS + Cu++ + 2e followed by CuS → Cu++ + S + 2e Moreover, at high anodic potential, the following reaction occurs also to some extent CuS + 4H2O ↦ Cu++ + SO4 = + 8H+ +8e resulting in a decrease in anodic current efficiency for the copper dissolution.

From a more practical point of view, it was shown that it is possible to deplete virtually completely the copper content of the anode (residue at less than 0.5 pct Cu)keepingthe electrode potential at a low value (less than +650 mV/ENH). Providing the temperature is high enough (75°C at least), the mean current density remains near to 2 A/dm2, a suitable value to obtain good cathodic deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Marchese: German Patent, 22,429 (1882).

  2. H. O. Hoffman and C. R. Hayward:Metallurgy of Copper, 2nd Ed., McGraw Hill, New York, 1924.

    Google Scholar 

  3. A. G. Loshkarev and A. F. Vozisov:Zh. Prikl. Khim., 1953, vol. 26, pp. 55–62(Chem. Abstr., 1953, vol. 47, p. 6795b).

    CAS  Google Scholar 

  4. S. Venkatachalam and R. Mallikarjunan:Trans. Ins. Mining Met./Sect. C, 1968, vol. 77, PP.C45–52.

    CAS  Google Scholar 

  5. F. Habashi and N. Torres-Acuna:Trans. TMS-AIME, 1968, vol. 22, pp. 53–64.

    Google Scholar 

  6. V. Kuxmann and H. Biallass:Erzmetall., 1969, vol. 22, pp. 53–64.

    Google Scholar 

  7. P. Cavalotti and G. Salvago:Electrochim. Metal, 1969, vol. 4, pp. 181–210.

    Google Scholar 

  8. G. Thomas, T. R. Ingraham, and R. J. C. Mac Donald:Can. Met. Quart., 1968, vol. 6, pp. 281–91.

    Article  Google Scholar 

  9. J. Dahms, J. Gerlach, and J. Pawlek:Erzmetall, 1967, vol. 20, pp. 203–08.

    CAS  Google Scholar 

  10. D. M. Chizikov and B. Z. Ustinski:Izv. Akad. Nauk SSSR, Otd. Techn. Nauk, 1948, pp. 229–34(Chem. Abstr., 1948, vol. 42, pp. 6675i.) and 1949, pp. 1481–92.Zh. Prikl. Khim., 1949, vol. 22, pp. 1249–52(Chem. Abstr., 1950, vol. 44, pp. 3816i) and 1956, vol. 29, pp. 1129–31 (Chem. Abstr. 1956, vol. 50, p. 16474h.)

  11. W. Noddack and K. Wrabetz:Z. Elektrochem., 1955, vol. 59, pp. 96–102.

    CAS  Google Scholar 

  12. W. Noddack, K. Wrabetz, and W. Herbst:Z. Elecktrochem., 1955, vol. 59, pp. 752–55.

    CAS  Google Scholar 

  13. K. Wrabetz:Z. Elektrochem., 1956, vol. 60, pp. 722–31.

    CAS  Google Scholar 

  14. P. Ruetschi and R. F. Amlie:J. Electrochem. Soc., 1965, vol. 112, pp. 665–70.

    Article  CAS  Google Scholar 

  15. M. Sato:Econ. Geol., 1960, vol. 55, p. 1202.

    Article  CAS  Google Scholar 

  16. M. A. Klochko and M. E. Mironova:Izv. Sekt. Fiz. Khim. Anal, Inst. Obsch. Neorg. Khim, Akad. Nauk SSSR, 1954, vol. 25, pp. 128–33, (Chem. Abstr., 1955, vol. 49, p. 14527h; 1955, vol. 26, pp. 68–75 and 75–81. (Chem. Abstr., 1956, vol. 50, p. 2320a).

    CAS  Google Scholar 

  17. S. H. Cole and P. Duby: Columbia University, New York, Unpublished research, 1971.

  18. H. J. Mathieu and H. Riekert:Z. Phys. Chem., Neue Folge, 1972, vol. 79, pp. 315–30.

    Article  CAS  Google Scholar 

  19. A. Etienne and E. Peters:Trans. Inst. Mining Met./Sect. C, 1972, vol. 81, pp. 176–81.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Former assistant and student respectively, in the Department, are Chemical Engineers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennet, P., Jafferali, S., Vanseveren, JM. et al. Study of the mechanism of anodic dissolution of Cu2S. Metall Trans 5, 127–134 (1974). https://doi.org/10.1007/BF02642936

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642936

Keywords

Navigation