Skip to main content
Log in

Induction of pseudofoci and inhibition of density-mediated neoplastic transformation by PMA in NIH 3T3 cells after short-term exposures

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Depending on the precise conditions and cellular starting material, phorbol-13-myristate-12-acetate (PMA) can induce or suppress the transformation of NIH 3T3 cells. In sublines that do not undergo rapid transformation, exposure to PMA over the course of several weeks accelerated the process, while sublines that are primed for density-mediated transformation respond to PMA with a suppression of the process. This study examines the latter phenomenon. Within 1 h of exposure to 0.02µg/ml PMA, sparse cultures had undergone a morphological transition after which the cells appeared smaller and the processes thinner. These sublines exhibited a two-to sixfold increase in the saturation density achieved in 2% calf serum (CS). Phorbol ester analogs with hydrocarbon substitutions of 4 or more carbons at positions 12 and 13 of the phorbol nucleus had a similar effect as PMA on the saturation density. High concentrations of PMA (1µg/ml) induced the formation of cell aggregates (pseudofoci) that resembled transformed foci in their high local density, but unlike transformed foci, did not reinitiate focus formation if the cells were diluted and replated without PMA as secondary cultures. PMA inhibited the processes of neoplastic transformation and progression that occur readily in these NIH 3T3 sublines when they reach high cell density. I suggest that such changes occur because PMA abolishes the selection pressure at high densities that favors the transformation of some cells in heterogeneous populations. Induction of transformation by PMA (reported previously) occurs after much longer exposures in sublines that are relatively resistant to rapid density-mediated transformation. These results are discussed in the context of progressive state selection, a concept that has been developed to account for spontaneous transformation in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boreiko, C.; Mondal, S.; Narayan, K. S., et al. Effect of 12-0-tetradecanoylphorbol-12-acetate on the morphology and growth of C3H/10T1/2 mouse embryo cells. Cancer Res. 40:4709–4716; 1980.

    PubMed  CAS  Google Scholar 

  2. Dean, A. C. R.; Hinshelwood, C. Integration of cell reactions. Nature (Lond.) 199:7–11; 1963.

    Article  CAS  Google Scholar 

  3. Diamond, L.; O’Brien, S.; Donaldson, C., et al. Growth stimulation of human diploid fibroblasts by the tumor promoter, 12-0-tetradecanoyl-phorbol-13-acetate. Int. J. Cancer 13:721–730; 1974.

    Article  PubMed  CAS  Google Scholar 

  4. Driedger, P. E.; Blumberg, P. M. Quantitative correlation betweenin vitro andin vivo activities of phorbol esters. Cancer Res. 39:714–719; 1979.

    PubMed  CAS  Google Scholar 

  5. Ellison, B. J.; Rubin, H. Individual transforming events in long-term cell culture of NIH 3T3 cells as products of epigenetic induction. Cancer Res. 52:667–673; 1992.

    PubMed  CAS  Google Scholar 

  6. Farber, E.; Rubin, H. Cellular adaptation in the origin and development of cancer. Cancer Res. 51:2751–2761; 1991.

    PubMed  CAS  Google Scholar 

  7. Foulds, L. Neoplastic development. Vol. 1. New York: Academic Press; 1969.

    Google Scholar 

  8. Frankfurt, O. S.; Raitcheva, E. Fast onset of DNA synthesis stimulated by tumor promoter in mouse epidermis at the initiation stage of carcinogenesis. J. Natl. Cancer Inst. 51:1861–1864; 1973.

    PubMed  CAS  Google Scholar 

  9. Grubbs, R. D.; Maguire, M. E. Regulation of magnesium but not calcium transport by phorbol ester. J. Biol. Chem. 161:12550–12554; 1986./REF1

    Google Scholar 

  10. Kennedy, A. R. Promotion and other interactions between agents in the induction of transformation in vitro in fibroblasts. in:Tumor Promotion and Cocarcinogenesis in Vitro. ed. by T. J. Slaga; Boca Raton, FL: CRC Press; pp. 13–55; 1984.

    Google Scholar 

  11. Kennedy, A. R.; Fox, M.; Murphy, G., et al. Relationship between x-ray exposure and malignant transformation in C3H 10T1/2 cells. Proc. Natl. Acad. Sci. USA 77:7262–7266; 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Lichti, U.; Patterson, E.; Hennings, H., et al. The tumor promoter 12-0-tetradecanoylphorbol-13-acetate induces ornithine decarboxylase in proliferating basal cells but not in differentiating cells from mouse epidermis. J. Cell. Physiol. 107:261–270; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Lowry, O. H.; Rosebrough, A. J.; Farr, A. L., et al. Protein measurements with the folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  14. Mondal, S.; Brankow, D. W.; Heidelberger, C. Two-stage chemical oncogenesis in cultures of C3H/10T1/2 cells. Cancer Res. 36:2254–2260; 1976.

    PubMed  CAS  Google Scholar 

  15. Mondal, S.; Heidelberger, C.In vitro malignant transformation by methylcholanthrene of the progeny of single cells derived from C3H mouse prostate. Proc. Natl. Acad. Sci. USA 65:219–229; 1970.

    Article  PubMed  CAS  Google Scholar 

  16. Nanney, D. L. Epigenetic control systems. Proc. Natl. Acad. Sci. USA. 44:712–717; 1958.

    Article  PubMed  CAS  Google Scholar 

  17. O’Brien, T. G. Hexose transport in undifferentiated and differentiated Balb/c 3T3 preadipose cells: effects of 12-0-tetradecanoylphorbol-13-acetate and insulin. J. Cell. Physiol. 110:63–71; 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Poiley, J. A.; Raineri, R.; Pienta, R. J. Two-stage malignant transformation in hamster embryo cells. Br. J. Cancer 39:8–14; 1979.

    PubMed  CAS  Google Scholar 

  19. Popescu, N. C.; Amsbaugh, S. C.; DiPaolo, J. A. Enhancement ofN-methyl-N-nitro-N-nitrosoguanidine transformation of Syrian hamster cells by a phorbol diester is independent of sister chromatid exchanges and chromosome aberrations. Proc. Natl. Acad. Sci. USA 77:7282–7286; 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Rice, R. H.; Cline, P. R. Opposing effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and hydrocortisone on growth and differentiation of cultured malignant human keratinocytes. Carcinogenesis 5:367–371; 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Rice, R. H.; Rong, X.; Chakravarty, R. Suppression of keratinocyte differentiation in SSC-9 human squamous carcinoma cells by benzo[a]pyrene, 12-O-tetradecanoylphorbol-13-acetate and hydroxyurea. Carcinogenesis 9:1885–1890; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Rosoff, P. M.; Stein, L. F.; Cantley, L. C. Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange. J. Biol. Chem. 259:7056–7060; 1984.

    PubMed  CAS  Google Scholar 

  23. Rubin, A. L. Suppression of transformation by, and growth adaptation to, low concentrations of glutamine in NIH 3T3 cells. Cancer Res. 50:2832–2839; 1990.

    PubMed  CAS  Google Scholar 

  24. Rubin, A. L.; Ellison, B. J. Induction of transformation in NIH 3T3 cells by moderate growth constraint: Evidence that neoplasia is driven by adaptational change. Carcinogenesis 12:1801–1806; 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Rubin, A. L.; Rubin, H. Selective nature of phorbol 12-myristate 13-acetate-induced neoplastic transformation in NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 91:2320–2323; 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Rubin, A. L.; Yao, A.; Rubin, H. Relation of spontaneous transformation in cell culture to adaptive growth and clonal heterogeneity. Proc. Natl. Acad. Sci. USA 87:482–486; 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Rubin, H. Adaptive evolution of degrees and kinds of neoplastic transformation in cell culture. Proc. Natl. Acad. Sci. USA 89:977–981; 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Schliwa, M.; Nakamura, T.; Porter, K. R., et al. A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells. J. Cell Biol. 99:1045–1059; 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Shipley, G. D.; Ham, R. G. Improved medium and culture conditions for clonal growth with minimum serum protein and for enhanced serum-free survival of Swiss 3T3 cells. In Vitro 17:656–670; 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Sivak, A.; Van Duuren, B. L. A cell culture system for the assessment of tumor-promoting activity. J. Natl. Cancer Inst. 44:1091–1097; 1970.

    PubMed  CAS  Google Scholar 

  31. Yao, A.; Rubin, A. L.; Rubin, H. Progressive state selection of cells in low serum promotes high density growth and neoplastic transformation in NIH 3T3 cells. Cancer Res. 50:5171–5176; 1990.

    PubMed  CAS  Google Scholar 

  32. Yuspa, S. H.; Ben, T.; Hennings, H. Divergent responses in epidermal basal cells exposed to the tumor promoter 12-0-tetradecanoylphorbol-13-acetate. Cancer Res. 42:2344–2349; 1982.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, A.L. Induction of pseudofoci and inhibition of density-mediated neoplastic transformation by PMA in NIH 3T3 cells after short-term exposures. In Vitro Cell Dev Biol - Animal 31, 183–189 (1995). https://doi.org/10.1007/BF02639432

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02639432

Key words

Navigation