Skip to main content
Log in

Determination of the length of polymethylene chains in salts of saturated and unsaturated fatty acids by infrared spectroscopy

  • Technical
  • Published:
Journal of the American Oil Chemists Society

Abstract

The length of polymethylene chains is determined by counting the number of, or measuring the position of, methylene vibration peaks in the 1070–710 cm−1 and/or the 1380–1170cm−1 regions of the IR spectrum of salts of fatty acids. Plotting this peak position against the phase relationship of the vibration in adjacent methylenes gives a curve which is independent of the chain length. (Thephase relationship, Φ/π=k/(m+1); where φ is the phase difference in radians between adjacent methylenes in a chain;m is the number of methylenes in the chain;k=1,2,3,…m, withk=1 generally assigned to the in-phase vibration.) Separate curves are obtained for methylene wagging and for two arrays of coupled twisting-rocking vibrations.

Coupled twisting-rocking vibrations give as many as one peak per methylene group in the 1070–710 cm−1 region with silver, sodium, potassium and barium salts of saturated acids. Lead salt peaks split. These peaks show the total length of salts of both saturated andtrans-unsaturated acids, but only the length of the carboxylate segment in salts ofcis-unsaturated acids. (The carboxylate segment comprises the carbons from the carboxylate carbon to the first unsaturated carbon, inclusive.)

Wagging vibrations in the 1380–1170 cm−1 region show the total chain length of saturated salts and the length of the carboxylate segment in unsaturated salts, bothcis andtrans. This region also has peaks for twisting-rocking vibrations, and they are most conspicuous in the spectra of silver and barium salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahamsson, S., and I. Fischmeister, Arkiv Kemi14, 57–63 (1959).

    CAS  Google Scholar 

  2. AOCS, “Official and Tentative Methods,” 2nd ed., Chicago, Cd 6–38.

  3. Bellam, L. J., “The Infrared Spectra of Complex Molecules,” 2nd ed., John Wiley and Sons, New York, 1958, p. 172–173.

    Google Scholar 

  4. Brini-Fritz, M., Bull. Soc. Chim. France24, 516–520 (1957).

    Google Scholar 

  5. Chapman, D., J. Chem. Soc. 784–789 (1958).

  6. Corish, P. J., and D. Chapman,Ibid. 1746–1751 (1957).

  7. Corish, P. J., and W. H. T. Davison,Ibid. 927–934 (1958).

  8. Ferguson, E. E., J. Chem. Phys.24, 1115 (1956).

    Article  CAS  Google Scholar 

  9. Holland, R. F., and J. R. Nielsen, J. Mol. Spectr.8, 383–405 (1962).

    Article  ADS  CAS  Google Scholar 

  10. Holland, R. F., and J. R. Nielsen,Ibid. 9, 436–460 (1962).

    Article  ADS  CAS  Google Scholar 

  11. Jones, R. N., Can. J. Chem.40, 301–320 (1962).

    Article  CAS  Google Scholar 

  12. Jones, R. N., A. F. McKay and R. G. Sinclair, J. Am. Chem. Soc.74, 2575–2578 (1952).

    Article  CAS  Google Scholar 

  13. Krimm, S., Fortschr. Hochpolymer Forsch.Bd 2, 51–172 (1960).

    Google Scholar 

  14. Meiklejohn, R. A., et al., Anal. Chem.29, 329–334 (1957).

    Article  CAS  Google Scholar 

  15. Metcalfe, L. D., and A. A. Schmitz, Anal. Chem.33, 363–364 (1961).

    Article  CAS  Google Scholar 

  16. Nielsen, J. R., and A. H. Woollett, J. Chem. Phys.26, 1391–1400 (1957).

    Article  CAS  Google Scholar 

  17. Primas, H., and Hs. H. Günthard, Helv. Chim. Acta36, 1659–1670 (1953).

    Article  CAS  Google Scholar 

  18. Primas, H., and Hs. H. Günthard,Ibid. 36, 1791–1803 (1953).

    Article  CAS  Google Scholar 

  19. Schachtschneider, J. H., and R. G. Snyder, Spectrochim. Acta19, 117–168 (1963).

    Article  CAS  Google Scholar 

  20. Sheppard, N., “Rotational Isomerism about C-C Bonds in Saturated Molecules as Studied by Vibrational Spectroscopy,” in H. W. Thompson, ed., Advances in Spectroscopy, Vol. 1, Interscience Publishers Inc., New York, 1959, p. 288–353.

    Google Scholar 

  21. Snyder, R. G., J. Chem. Phys.27, 969–970 (1957).

    Article  CAS  Google Scholar 

  22. Snyder, R. G., J. Mol. Spectr.4, 411–434 (1960).

    Article  ADS  CAS  Google Scholar 

  23. Snyder, R. G., and J. H. Schachtschneider, Spectrochim. Acta19, 85–116 (1963).

    Article  CAS  Google Scholar 

  24. Susi, H., Anal. Chem.31, 910–913 (1959).

    Article  CAS  Google Scholar 

  25. Susi, H., J. Am. Chem. Soc.81, 1535–1540 (1959).

    Article  CAS  Google Scholar 

  26. Susi, H., and A. M. Smith, JAOCS37, 431–435 (1960).

    CAS  Google Scholar 

  27. Susi, H., and S. Pazner, Spectrochim, Acta18, 499–506 (1962).

    Article  CAS  Google Scholar 

  28. Tschamler, H., J. Chem. Phys.22, 1845–1854 (1954).

    Article  CAS  Google Scholar 

  29. Wenzel, F., U. Schiedt, and F. L. Breusch, Z. Naturforsch.B12, 71–85 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kirby, E.M., Evans-Vader, M.J. & Brown, M.A. Determination of the length of polymethylene chains in salts of saturated and unsaturated fatty acids by infrared spectroscopy. J Am Oil Chem Soc 42, 437–446 (1965). https://doi.org/10.1007/BF02635587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02635587

Keywords

Navigation