Skip to main content
Log in

Potential pitfall in the determination of free [Mg2+] by31P NMR when using the β/α-ATP peak height ratio method

  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Recently, Clarke et al., (Clarke K, Kashiwaya Y, King MT, Gates D, Keon CA, Cross HR, Radda GK, Veech RL. The β/α peak height ratio of ATP. A measure of free [Mg 2+free ] using31 P NMR, J. Biol. Chem. 1996;271:21142–21150.) reported a new method to noninvasively determine the concentration of intracellular free magnesium ([Mg 2+free ]) based on the measurement of the peak height ratioh β/α of the β- and α-ATP signals in31P NMR spectra.h β/α varies with Mgfree 2+], however, the study presented here shows thath β/α also strongly depends on the homogeneity of the static magnetic field. For this reason, we performed at a magnetic field strength of 1.5 T31P NMR measurements of solutions that mimic intracellular medium. The magnetic field homogeneity was varied by changing the currents in the shim coils, and the effect onh β/α is demonstrated with and without proton decoupling. In both cases,h β/α strongly depends on the magnetic field homogeneity and can therefore lead to a pitfall in the determination of [Mgfree 2+].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. London RE. Methods for measurement of intracellular magnesium: NMR and fluorescence. Annu Rev Physiol 1991;53:241–58.

    PubMed  CAS  Google Scholar 

  2. Gupta RK, Benovic JL, Rose ZB. Magnetic resonance studies of the binding of ATP and cations of human hemoglobin. J Biol Chem 1978;253:6165–71

    PubMed  CAS  Google Scholar 

  3. Gupta RK, Gupta P, Yushok WD, Rose ZB. On the noninvasive measurement of intracellular free magnesium by31P NMR spectroscopy. Physiol Chem Phys Med NMR 1983;15:265–80.

    PubMed  CAS  Google Scholar 

  4. Halvorson HR, Vande Linde AMQ, Helpern JA, Welch KMA. Assessment of magnesium concentrations by31P NMR in vivo. NMR Biomed 1992;5:53–8.

    Article  PubMed  CAS  Google Scholar 

  5. Mosher TJ, Williams GD, Doumen C, LaNoue KF, Smith MB. Error in the calibration of the MgATP chemical-shift limit: Effects on the determination of free magnesium by31P NMR spectroscopy. Magn Reson Med 1992;24:163–9

    Article  PubMed  CAS  Google Scholar 

  6. Williams GD, Mosher TJ, Smith MB. Simultaneous determination of intracellular magnesium and pH from the three 31-P NMR chemical shifts of ATP. Anal Biochem 1993;214:458–67.

    Article  PubMed  CAS  Google Scholar 

  7. Golding EM, Golding RM. Interpretation of31P MRS spectra in determining intracellular free magnesium and potassium ion concentrations. Magn Reson Med 1995;33:467–74

    Article  PubMed  CAS  Google Scholar 

  8. Iotti S, Frassineti C, Alderighi L, Sabatini A, Vacca A, Barbiroli B. In vivo assessment of free magnesium concentration in human brain by31P MRS. A new calibration curve based on a mathematical algorithm. NMR Biomed 1996;9:24–32.

    Article  PubMed  CAS  Google Scholar 

  9. Widmaier S, Hoess T, Breuer J, Jung WI, Dietze GJ, Lutz O. Magnesium-based temperature dependence of the ATP chemical shift separation δαβ and its relation to intracellular free magnesium. J Magn Reson 1996:Series B, 113:16–24

    Article  CAS  Google Scholar 

  10. Clarke K, Kashiwaya Y, King MT, Gates D, Keon CA, Cross HR. Radda GK, Veech RL. The β,α peak height ratio of ATP. A measure of free [Mgfree 2−] using31P NMR. J Biol Chem 1996;271:21142–50.

    Article  PubMed  CAS  Google Scholar 

  11. Clarke K, Kashiwaya Y, King MT, Gates D, Keon CX, Cross HR, Radda GK, Veech RL. Additions and Corrections: The β/α peak height ratio of ATP. A measure of free [Mgfree 2+] using31P NMR. J Biol Chem 1996;271:27188.

    CAS  Google Scholar 

  12. Mottet I, Demeure R, Gallez B, Grandin C, Nan Beers BE, Pringot J. Experimental31P NMR study of the influence of ionic strength on the apparent dissociation constant of MgATP. Magn Reson Mater Phys 1994;2:101–7.

    Article  CAS  Google Scholar 

  13. Mulquiney PJ, Kuchel PW. Measurement of free [Mg2+] with31P MRS: some theoretical and practical problems. Sixth Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Sydney, April 18–24, 1998; p. 1894.

  14. Mulquiney PJ, Kuchel PW. Using the β/α peak-height ratio of ATP in31P NMR spectra to measure free [Mg2+]: some theoretical and practical problems. NMR Biomed., in press.

  15. van der Veen JWC, de Beer R, Luyten PR, van Ormondt D. Accurate quantification of in vivo31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med 1988;6:92–8.

    Article  PubMed  Google Scholar 

  16. Noggle JH, Schirmer RE. The Nuclear Overhauser Effect. Chemical Application. New York, London: Academic Press, 1971.

    Google Scholar 

  17. Widmaier S, Breuer J, Jung WI, Dietze GJ, Lutz O. Maximum NOE enhancements of the31P ATP signals in vitro differ with K+ and Mg2+ content. Magn Reson Mater Phys 1997;5:151–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Lutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widmaier, S., Jung, WI., Dietze, G.J. et al. Potential pitfall in the determination of free [Mg2+] by31P NMR when using the β/α-ATP peak height ratio method. MAGMA 9, 1–4 (1999). https://doi.org/10.1007/BF02634586

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634586

Keywords

Navigation