Skip to main content
Log in

Regional proton nuclear magnetic resonance spectroscopy differentiates cortex and medulla in the isolated perfused rat kidney

  • Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Volume-localized proton nuclear magnetic resonance spectroscopy was used as an assay of regional biochemistry in the isolated perfused rat kidney. This model eliminated artifacts caused by respiratory and cardiac motion experiencedin vivo. Immersion of the kidney under its venous effluent reduced the susceptibility artifacts evoked by tissue-air interfaces. The rapid acquisition with relaxation enhancement imaging sequence was used for scout imaging. This gave excellent spatial resolution of the cortex, outer medulla, and inner medulla. Spectra were then acquired in 10 minutes using the volume-selective multipulse spectroscopy sequence from voxels with a volume of approximately 24 μL located within the cortical or medullary regions. Spectral peaks were assigned by the addition of known compounds to the perfusion medium and by comparison with spectra of protein-free extracts of cortex and medulla. The medullary region spectra were characterized by signals from the osmolytes betaine, glycerophosphorylcholine, and inositol. The spectra from the cortex were more complex and contained lesser contributions from osmolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crozier S, Field J, Brereton IM, Moxon LN, Shannon GF, Doddrell DM (1991)In vivo localized1H NMR spectroscopy at 11.7 Tesla.J Magn Reson 94: 123–132.

    CAS  Google Scholar 

  2. Doddrell DM, Brereton IM, Crozier S (1992) High-field localized1H NMR spectroscopy. InMagnetic Resonance Microscopy: Methods and Application in Materials Science, Agriculture and Biomedicine (Blumich B, Kuhn W, eds.) pp. 547–562. New York: VCH Verlagsgesellschaft mbH.

    Google Scholar 

  3. Shah NJ, Carpenter TA, Wilkinson ID, Hall LD, Dixon AK, Freer CEL, Prosser K, Evans DB (1991) Localizedin vivo proton spectroscopy of the human kidney.Magn Reson Med 20: 292–298.

    Article  PubMed  CAS  Google Scholar 

  4. Dixon RM, Frahm J (1994) Localized proton MR spectroscopy of the human kidneyin vivo by means of short echo time STEAM sequences.Magn Reson Med 31, 482–487.

    Article  PubMed  CAS  Google Scholar 

  5. Avison MJ, Rothman DL, Nixon TW, Long WS, Siegel NJ (1991)1H NMR study of renal trimethylamine responses to dehydration and acute volume loading in man.Proc Natl Acad Sci USA 88: 6053–6057.

    Article  PubMed  CAS  Google Scholar 

  6. Leaf A, Cotran RS (1976) Renal physiology an introduction. InRenal Pathophysiology. New York: Oxford University Press.

    Google Scholar 

  7. Catto GRD (1988) Renal physiology. InNephrology in Renal Practice (Catto GRD, Power DA, eds.) Melbourne: Hodder and Stroughton.

    Google Scholar 

  8. Pfaller W, Gstraunthaler G, Kotanko P (1985) Compartments and surfaces in renal cells. InRenal Biochemistry: Cells, Membranes, Molecules (Kinne RKH, ed.) pp. 1–62. Oxford: Elsevier.

    Google Scholar 

  9. Terrier F, Lazeyras F, Posse S, Aue WP, Zimmermann A, Frey BM, Frey FJ (1989) Study of acute renal ischemia in the rat using magnetic resonance imaging and spectroscopy.Magn Reson Med 12: 114–136.

    Article  PubMed  CAS  Google Scholar 

  10. Wolff SD, Balaban RS (1987) Proton NMR spectroscopy and imaging of the rabbit kidney,in vivo, at 4.7 Tesla.J Magn Reson 75: 190–192.

    CAS  Google Scholar 

  11. Berkowitz BA, Wolff SD, Balaban RS (1988) Detection of metabolitesin vivo using 2D proton homonuclear correlated spectroscopy.J Magn Reson 79: 547–553.

    CAS  Google Scholar 

  12. Endre ZH, Kuchel PW (1985) Proton NMR spectroscopy of rabbit renal cortex.Kidney Int 28: 6–10.

    PubMed  CAS  Google Scholar 

  13. Bagnasco S, Balaban R, Fales HM, Yang Y-M, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas.J Biol Chem 261: 5872–5877.

    PubMed  CAS  Google Scholar 

  14. Gullans RS, Blumenfield JD, Balschi JA, Kaleta M, Brenner RM, Heilig CW, Herbert SC (1988) Accumulation of major organic osmolytes in rat renal inner medulla in dehydration.Am J Physiol 255: F626-F634.

    PubMed  CAS  Google Scholar 

  15. Heilig CW, Stromski ME, Gullans SR (1989) Methylamine and polyol responses to salt loading in renal inner medulla.Am J Physiol 257: F1117-F1123.

    PubMed  CAS  Google Scholar 

  16. Garcia-Perez A, Burg MB (1991) Renal medullary organic osmolytes.Physiol Rev 71: 1081–1115.

    PubMed  CAS  Google Scholar 

  17. Fichtner K-P, Endre ZH, Kriz W, Werner U, Pomer S, Ritz E, Hull WE (1977) Anatomical and functional1H NMR microscopy of the perfused rat kidney using an IR-FLASH sequence for flow-sensitive contrast.Magn Reson Imaging, submitted.

  18. Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR.Magn Reson Med 3, 823–833.

    Article  PubMed  CAS  Google Scholar 

  19. Kimmich R, Hoepfel D (1987) Volume-selective multipulse spin-echo spectroscopy.J Magn Reson 72: 379–384.

    Google Scholar 

  20. Epstein FH, Brosnan JT, Tange JD, Ross BD (1982) Improved function with amino acids in the isolated perfused kidney.Am J Physiol 243: F284-F292.

    PubMed  CAS  Google Scholar 

  21. Ratcliffe PJ, Endre ZH, Scheinman SJ, Tange JD, Ledingham JG, Radda GK (1988)31P nuclear magnetic resonance study of steady-state adenosine 5′-triphosphate levels during graded hypoxia in the isolated perfused rat kidney.Clin Sci 74: 437–448.

    PubMed  CAS  Google Scholar 

  22. Cross M, Endre ZH, Stewart-Richardson P, Cowin GJ, Westhuyzen J, Duggleby RG, Fleming SJ (1993)23Na-NMR detects hypoxic injury in intact kidney: increases in sodium inhibited by DMSO and DMTU.Magn Reson Med 30: 465–475.

    Article  PubMed  CAS  Google Scholar 

  23. Doddrell DM, Galloway GJ, Brooks WM, Field J, Bulsing JM, Irving MG, Baddley H (1986) Water signal eliminationin vivo, using “suppression by mistimed echo and repetitive gradient episodes.”J Magn Reson 70: 176–180.

    CAS  Google Scholar 

  24. Sizeland PCB, Chambers ST, Lever M, Bason LM, Robson RA (1993) Organic osmolytes in human and other mammalian kidneys.Kidney Int 43: 448–453.

    PubMed  CAS  Google Scholar 

  25. Guder WG, Beck FX, Schmolke M (1990) Regulation and localization of organic osmolytes in mammalian kidney.Klin Wochenschr 68: 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  26. Silbernagl S (1992) Amino acids and oligopeptides. InThe Kidney: Physiology and Pathophysiology (Seldin DW, Giebisch G, eds.) pp. 2889–2920. New York: Raven Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowin, G.J., Leditschke, I.A., Crozier, S. et al. Regional proton nuclear magnetic resonance spectroscopy differentiates cortex and medulla in the isolated perfused rat kidney. MAGMA 5, 151–158 (1997). https://doi.org/10.1007/BF02592246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592246

Key words

Navigation