Skip to main content
Log in

A 29 000 molecular weight fraction from fetal rat liver adhering cells that cooperates with erythropoietin in stimulating the growth of erythroid progenitors

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The erythroid-potentiating effects of a protein fraction produced by 20-day rat fetal liver-adhering cells are studied. Partial purification by gel filtration gave an active fraction (apparent molecular weight = 29×103) that significantly increased the erythroid colony counts (CFUe and late BFUe) in cultures of liver cell fractions depleted of adhering cells at both limiting and saturating concentration of recombinant human erythropoietin. The sensitivity of CFUe and BFUe to erythropoietin was increased by the activator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, N. G.; Feldman, E.; Falck, J. R., et al. Modulation of erythropoiesis by novel human bone marrow cytochrome P450-dependent metabolites of arachidonic acid. Blood 78:1461–1466; 1991.

    PubMed  CAS  Google Scholar 

  • Aron, D. C. Insulin-like growth factor I and erythropoiesis. Biofactors 3:211–216; 1992.

    PubMed  CAS  Google Scholar 

  • Aye, M. T.; Izaguirre, C. A. Erythroid lineage-specific activity in conditioned medium derived from cloned human marrow stromal cells (CFU-RF). J. Cell. Physiol. 148:440–445; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Birner, A.; Hultner, L.; Mergenthaler, H. G., et al. Recombinant murine interleukin 9 enhances the erythropoietin-dependent colony formation of human BFU-E. Exp. Hematol. 20:541–545; 1992.

    PubMed  CAS  Google Scholar 

  • Bourette, R. P.; Royet, J.; Mouchiroud, G., et al. Murine interleukin 9 stimulates the proliferation of mouse erythroid progenitor cells and favors the erythroid differentiation of multipotent FDCP-mix cells. Exp. Hematol. 20:868–873; 1992.

    PubMed  CAS  Google Scholar 

  • Clark, B. J.; Housman, D. Characterization of an erythroid precursor cell of high proliferative capacity in normal human peripheral blood. Proc. Natl. Acad. Sci. USA 74:1105–1109; 1977.

    Article  Google Scholar 

  • Donahue, R. E.; Yang, Y. C.; Clark, S. C. Human P40T-cell growth factor (interleukin) supports erythroid colony formation. Blood 75:2271–2275; 1990.

    PubMed  CAS  Google Scholar 

  • Eaves, A. C.; Eaves, C. J. Erythropoiesis in culture. Clin. Hematol. 13:371–391; 1984.

    CAS  Google Scholar 

  • Emerson, S. G.; Young, Y. C.; Clark, S. C., et al. Human recombinant granulocyte-macrophage colony stimulating factor and interleukin 3 have overlapping but distinct hematopoietic activities. J. Clin. Invest. 82:1282–1287; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, N.; Quesenberry, P. J. Regulation of erythropoiesis. The role of growth factors. Anemia 76:745–755; 1992.

    CAS  Google Scholar 

  • Gregory, C. J.; Eaves, A. C. Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51:527–537; 1978.

    PubMed  CAS  Google Scholar 

  • Iscove, N. N. The role of erythropoietin in regulation of population size and cell cycling of early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet. 10:323–334; 1977.

    PubMed  CAS  Google Scholar 

  • Iscove, N. N.; Sieber, F. Erythroid pregenitors in mouse bone marrow detected by microscopic colony formation in culture. Exp. Hematol. 3:32–43; 1975.

    PubMed  CAS  Google Scholar 

  • Iscove, N. N.; Sieber, F.; Winterhalter, K. H. Erythroid colony formation in cultures of mouse and human bone marrow; analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose concanavalin. A. J. Cell. Physiol. 83:309–320; 1974.

    Article  CAS  Google Scholar 

  • Kanamaru, A.; Okamoto, T.; Hara, H., et al. Developmental changes in erythropoietin responsiveness of late erythroid precursors in mouse hematopoietic organs. Dev. Biol. 92:221–226; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, N.; Nakauchi, H.; Miwa, A., et al. Establishment and characterization of a human leukemic cell line with megakaryocytic features: dependency on granulocyte-macrophage colony-stimulating factor, interleukin 3, or erythropoietin for growth and survival. Cancer Res. 51:341–348; 1991.

    PubMed  CAS  Google Scholar 

  • Lowry, O. H.; Rosenbrough, N. J.; Faar, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  • Merchav, S.; Silvian-Drachsler, I.; Tatarsky, I., et al. Comparative studies of the erythroid-potentiating effects of biosynthetic human insulin-like growth factors I and II. J. Clin. Endocrinol. Metab. 74:447–452; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M. J.; Sullivan, M. E. Culture of erythroid stem cells from murine and human marrow and blood. In: Murphy, M. J., ed. In vitro aspects of erythropoiesis. New York: Springer Verlag; 1978:262–265.

    Google Scholar 

  • Nagel, M. D.; Nagel, J. Development of erythroid colony-forming cells in rat fetal spleen: apparent lack of sensitivity toin vivo corticosteroid excess as compared to fetal liver. Development 99:239–246; 1987.

    PubMed  CAS  Google Scholar 

  • Nagel, M. D.; Nagel, J. Erythroid colony formation by fetal rat liver and spleen cellsin vitro: inhibition by a low relative molecular mass component of fetal spleen. Development 114:213–219; 1992.

    PubMed  CAS  Google Scholar 

  • Nakao, K.; Kosaka, M.; Saito, S. Effects of erythroid differentiation factor (EDF) on proliferation and differentiation of human hematopoietic progenitors. Exp. Hematol. 19:1090–1095; 1991.

    PubMed  CAS  Google Scholar 

  • Ogawa, M.; Mac Eachern, M. D.; Avila, L. Human marrow erythropoiesis in culture: II heterogeneity in the morphology, time course of colony formation, and sedimentation velocities of the colony-forming cells. Am. J. Hematol. 3:29–36; 1977.

    PubMed  CAS  Google Scholar 

  • Quesniaux, V.; Clark, S. C.; Turner, K., et al. Interleukin-II stimulates multiple phases of erythropoiesisin vitro. Blood 80:1218–1223; 1992.

    PubMed  CAS  Google Scholar 

  • Rich, I. N. The developmental biology of hemopoiesis: effect of growth factors on the colony formation by embryonic cells. Exp. Hematol. 20:368–370; 1992.

    PubMed  CAS  Google Scholar 

  • Rich, I. N.; Kubanek, B. The ontogeny of erythropoiesis in the mouse detected by the erythroid colony-forming technique. II. Transition in erythropoietin sensitivity during development. J. Embryol. Exp. Morphol. 58:143–155; 1980.

    PubMed  CAS  Google Scholar 

  • Ross, J.; Sautner, D. Induction of globin mRNA accumulation by hemin in cultured erythroleukemic cells. Cell 8:513–520; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki, M.; Sakai, R.; Tabuchi, M., et al. Evidence for the participation of endogenous Activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc. Natl. Acad. Sci. USA 89:1553–1556; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Urabe, M.; Murphy, M. J. Miniaturization of methylcellulose erythroid colony assay. In: Murphy, M. J., ed.In vitro aspects of erythropoiesis. New York: Springer Verlag; 1978:28–30.

    Google Scholar 

  • Wang, C. Q.; Udupa, K. B.; Lipschitz, D. A. The role of macrophages in the regulation of erythroid colony growthin vitro. Blood 80:1702–1709; 1992.

    PubMed  CAS  Google Scholar 

  • Zhao, S. F.; Wu, C. T. Comparison of the erythropoietic growth factors produced during in vitro culture of murine and human fetal liver cells. Exp. Hematol. 18:367–371; 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, M.D. A 29 000 molecular weight fraction from fetal rat liver adhering cells that cooperates with erythropoietin in stimulating the growth of erythroid progenitors. In Vitro Cell Dev Biol - Animal 29, 782–788 (1993). https://doi.org/10.1007/BF02634345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634345

Key words

Navigation